科目: 来源: 题型:
【题目】我国魏晋时期的数学家刘徽(263年左右)首创“割圆术”,所谓“割圆术”就是利用圆内接正多边形无限逼近圆来确定圆周率,刘徽计算出圆周率.
刘徽从正六边形开始分割圆,每次边数成倍增加,依次可得圆内接正十二边形,圆内接正二十四边形,…,割的越细,圆的内接正多边形就越接近圆.设圆的半径为R,圆内接正六边形的周长,计算;圆内接正十二边形的周长,计算;请写出圆内接正二十四边形的周长________,计算________.(参考数据:,)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数的顶点坐标为,.
(1)若该函数图象过点.
①求该函数解析式;
②,函数图象上点到x轴的距离最小值为1,则t的值为______;
(2)若点P在函数的图象上,且,求h的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利40元。经调查发现:如果这种衬衫的售价每降低1元时,平均每天能多售出2件.设每件衬衫降价x元.
(1)降价后,每件衬衫的利润为_____元,销量为_____件;(用含x的式子表示)
(2)为了扩大销售,尽快减少库存,商场决定釆取降价措施。但需要平均每天盈利1200元,求每件衬衫应降价多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,已知一次函数的图象与反比例函数的图象交于点.
(1)求反比例函数的解析式;
(2)若一次函数的图象与反比例函数的图象的另一个交点为,请直接写出关于x的不等式的解集.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,函数的图象经过原点,开口向上,对称轴为直线,对于下列两个结论:①m为任意实数,则有;②方程有两个不相等的实数根,一个根小于0,另一个根大于2,说法正确的是( )
A.①对,②错B.①错,②对C.①②都对D.①②都错
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在某温度不变的条件下,通过一次又一次地对气缸顶部的活塞加压,测出每一次加压后气缸内气体的体积与气体对气缸壁产生的压强的关系可以用如图所示的函数图象进行表示,下列说法正确的是( )
A.气压P与体积V的关系式为
B.当气压时,体积V的取值范围为
C.当体积V变为原来的一半时,对应的气压P也变为原来的一半
D.当时,气压P随着体积V的增大而减小
查看答案和解析>>
科目: 来源: 题型:
【题目】综合与探究
如图,在平面直角坐标系中,已知抛物线与轴交于两点(点在点的右侧),与轴交于点,连接.
(1)求点三点的坐标和抛物线的对称轴;
(2)点为抛物线对称轴上一点,连接,,若,求点的坐标;
(3)已知点,若是抛物线上一个动点(其中),连接,,,求面积的最大值及此时点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】综合与实践
观察猜想
如图1,有公共直角顶点的两个不全等的等腰直角三角尺叠放在一起,点在上,点在上.
(1)在图1中,你发现线段,的数量关系是___________,直线,的位置关系是________.
操作发现
(2)将图1中的绕点逆时针旋转一个锐角得到图2,这时(1)中的两个结论是否成立?作出判断并说明理由;
拓广探索
(3)如图3,若只把“有公共直角顶点的两个不全等的等腰直角三角尺”改为“有公共顶角为(锐角)的两个不全等等腰三角形”,绕点逆时针旋转任意一个锐角,这时(1)中的两个结论仍然成立吗?作出判断,不必说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某面粉厂生产某品牌的面粉按质量分5个档次,生产第一档(最低档次)面粉,每天能生产55吨,每吨利润1000元.生产面粉的质量每提高一个档次,每吨利润会增加200元,但每天的产量会减少5吨.
(1)若生产第档次的面粉每天的总利润为元(其中为正整数,且),求生产哪个档次的面粉时,每天的利润最大,每天的最大利润是多少元?
(2)若生产第档次的面粉一天的总利润为60000元,求该面粉的质量档次.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com