相关习题
 0  246687  246695  246701  246705  246711  246713  246717  246723  246725  246731  246737  246741  246743  246747  246753  246755  246761  246765  246767  246771  246773  246777  246779  246781  246782  246783  246785  246786  246787  246789  246791  246795  246797  246801  246803  246807  246813  246815  246821  246825  246827  246831  246837  246843  246845  246851  246855  246857  246863  246867  246873  246881  266669 

科目: 来源: 题型:填空题

7.如图,在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA的中点.则异面直线OB与MD所成角余弦值为$\frac{\sqrt{10}}{10}$.

查看答案和解析>>

科目: 来源: 题型:解答题

6.设函数f(x)=(a-x)ex-1(e为自然对数的底数).
(Ⅰ)当a=1时,求f(x)的最大值;
(Ⅱ)当x∈(-∞,0)∪(0,+∞)时,$\frac{f(x)}{x}$<1恒成立,证明:a=1.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知椭圆C1的中心在坐标原点,两个焦点分别为F1(-1,0),F2(1,0),点A(1,$\frac{\sqrt{2}}{2}$)在椭圆C1上,过点A的直线L与抛物线C2:x2=4y交于B,C两点,抛物线C2在点B,C处的切线分别为l1,l2,且l1与l2交于点P.
(1)求椭圆C1的方程;
(2)是否存在满足|$\overrightarrow{P{F}_{1}}$|$+|\overrightarrow{P{F}_{2}}|$=|$\overrightarrow{A{F}_{1}}$|$+|\overrightarrow{A{F}_{2}}|$的点P,若存在,指出这样的点P有几个(不必求出点P的坐标);若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,曲线C1:x2=-4y,曲线C2:x2+(y-m)2=1(m>0),过曲线C1上的一点P(2,-1)作曲线C1的切线l,且l与C2恰好相切,切点为Q.
(Ⅰ)求曲线C2与直线l的方程;
(Ⅱ)若点N为C2上任意一异于Q的动点,求△NPQ面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知曲线C:x2=-2py(p>0),点M是曲线C上的一个动点,过点M且与曲线C相切的直线l的方程为x+y-1=0.
(Ⅰ)求曲线C的方程;
(Ⅱ)点A、B是曲线C上的两点,O为原点,直线AB与x轴交于点P(2,0),记OA、OB的斜率为k1、k2,试探求k1、k2的关系,并证明你的结论.

查看答案和解析>>

科目: 来源: 题型:选择题

2.某几何体的三视图如图,该几何体的体积为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.2

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.
(1)证明:BD⊥平面PAC;
(2)若点M在线段AP的延长线上且P为MA的中点,PA=1,AD=2,求二面角
    B-ED-M的余弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

20.有下列命题是假命题的是:(  )
A.双曲线$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1与椭圆$\frac{{x}^{2}}{35}$+y2=1有相同的焦点
B.“0<x<2”是“x2-2x-3<0”充分不必要条件
C.“若xy=0,则x、y中至少有一个为0”的否命题是真命题.
D.“?x∈R,使x2-2x+3≤0”

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知圆O:x2+y2=2,过点A(1,1)的直线交圆O所得的弦长为$\frac{2\sqrt{5}}{5}$,且与x轴的交点为双曲线E:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1的右焦点F(c,0)(c>2),双曲线E的离心率为$\frac{3}{2}$.
(1)求双曲线E的方程;
(2)过点P($\frac{4}{3}$,5)作动直线l交双曲线右支于M、N两点,点Q异于M,N,且在线段MN上运动,并满足关系$\frac{|PM|}{|PN|}$=$\frac{|MQ|}{|ON|}$,试证明点Q恒在一条直线上.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知圆M:(x+$\sqrt{3}$)2+y2=24,定点N($\sqrt{3}$,0),点P为圆M上的动点,点Q在NP上;点G在MP上,且满足$\overrightarrow{NP}$=-2$\overrightarrow{PQ}$,$\overrightarrow{CQ}$•$\overrightarrow{NP}$=0
(1)求点G的轨迹C的方程
(2)过点(2,0)作直线l与轴线C交于A,B两点;O是坐标原点,设$\overrightarrow{OS}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$;是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案