科目: 来源: 题型:
【题目】在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据已往经验,潜水员下潜的平均速度为
(米/单位时间),每单位时间的用氧量为
(升),在水底作业10个单位时间,每单位时间用氧量为
(升),返回水面的平均速度为
(米/单位时间),每单位时间用氧量为
(升),记该潜水员在此次考察活动中的总用氧量为
(升).
(1)求
关于
的函数关系式;
(2)若
,求当下潜速度
取什么值时,总用氧量最少.
查看答案和解析>>
科目: 来源: 题型:
【题目】设抛物线的顶点在坐标原点,焦点
在
轴上,过点
的直线交抛物线于
两点,线段
的长度为8,
的中点到
轴的距离为3.
(1)求抛物线的标准方程;
(2)设直线
在
轴上的截距为6,且抛物线交于
两点,连结
并延长交抛物线的准线于点
,当直线
恰与抛物线相切时,求直线
的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】设某校新、老校区之间开车单程所需时间为
,
只与道路畅通状况有关,对其容量为
的样本进行统计,结果如图:
| 25 | 30 | 35 | 40 |
频数(次) | 20 | 30 | 40 | 10 |
(1)求
的分布列与数学期望
;
(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知图①②都是表示输出所有立方小于1 000的正整数的程序框图,则图中应分别补充的条件为( )
![]()
![]()
① ②
A. ①n3≥1 000? ②n3<1 000?
B. ①n3≤1 000? ②n3≥1 000?
C. ①n3<1 000? ②n3≥1 000?
D. ①n3<1 000? ②n3<1 000?
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴,与直角坐标系
取相同的单位长度建立极坐标系,曲线
的极坐标方程为
.
(1)化曲线
的方程为普通方程,并说明它们分别表示什么曲线;
(2)设曲线
与
轴的一个交点的坐标为
,经过点
作斜率为1的直线,
交曲线
于
两点,求线段
的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
![]()
(Ⅰ)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(Ⅱ)能否有
的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.
附: ![]()
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目: 来源: 题型:
【题目】乔经理到老陈的果园里一次性采购一种水果,他俩商定:乔经理的采购价
(元/吨)与采购量
(吨)之间函数关系的图像如图中的折线段
所示(不包含端点
但包含端点
).
(1)求
与
之间的函数关系式;
(2)已知老陈种植水果的成本是2800元/吨,那么乔经理的采购量为多少时,老陈在这次买卖中所获的利润
最大?最大利润是多少?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知指数函数![]()
(1)函数
过定点
,求
的值;
(2)当
时,求函数
的最小值
;
(3)是否存在实数
,使得(2)中关于
的函数
的定义域为
时,值域为
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com