相关习题
 0  260016  260024  260030  260034  260040  260042  260046  260052  260054  260060  260066  260070  260072  260076  260082  260084  260090  260094  260096  260100  260102  260106  260108  260110  260111  260112  260114  260115  260116  260118  260120  260124  260126  260130  260132  260136  260142  260144  260150  260154  260156  260160  260166  260172  260174  260180  260184  260186  260192  260196  260202  260210  266669 

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中.己知直线l的参数方程为 (t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=4.
(1)写出直线l的普通方程与曲线C的直角坐标系方程;
(2)直线l与曲线C相交于A、B两点,求∠AOB的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,过点A作⊙O的切钱EP交CB 的延长线于P,己知∠PAB=25°.

(1)若BC是⊙O的直径,求∠D的大小;
(2)若∠DAE=25°,求证:DA2=DCBP.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系xOy中,l是过定点P(4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O为极点,

x轴非负半轴为极轴,取相同单位长度)中,曲线C的极坐标方程为.

(1)写出直线l的参数方程,并将曲线C的方程化为直角坐标方程;

(2)若曲线C与直线相交于不同的两点MN,求|PM|+|PN|的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=alnx+ ,曲线y=f(x)在点(1,f(1))处的切线方程为y=2.
(I)求a、b的值;
(Ⅱ)当x>1时,不等式f(x)> 恒成立,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)若不等式恒成立,求实数的最大值;

(2)当时,函数有零点,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】(1)已知,证明:

(2)已知 ,求证: .

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆E的中心在坐标原点,左、右焦点F1、F2分别在x轴上,离心率为 ,在其上有一动点A,A到点F1距离的最小值是1,过A、F1作一个平行四边形,顶点A、B、C、D都在椭圆E上,如图所示.
(Ⅰ)求椭圆E的方程;
(Ⅱ)判断ABCD能否为菱形,并说明理由.
(Ⅲ)当ABCD的面积取到最大值时,判断ABCD的形状,并求出其最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数fx=x2+alnx

1)若a=﹣1,求函数fx)的极值,并指出极大值还是极小值;

2)若a=1,求函数fx)在[1e]上的最值;

3)若a=1,求证:在区间[1+∞)上,函数fx)的图象在gx=x3的图象下方.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,底面△ABC是边长为2的等边三角形,D为AB中点.

(1)求证:BC1∥平面A1CD;
(2)若四边形BCC1B1是正方形,且A1D= ,求直线A1D与平面CBB1C1所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.
(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,n∈N)的函数解析式f(n);
(Ⅱ)该商场记录了去年夏天(共10周)空调器需求量n(单位:台),整理得表:

周需求量n

18

19

20

21

22

频数

1

2

3

3

1

以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,X表示当周的利润(单位:元),求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案