科目: 来源: 题型:
【题目】已知函数,
(Ⅰ)当时,求函数的单调递减区间;
(Ⅱ)若时,关于的不等式恒成立,求实数的取值范围;
(Ⅲ)若数列满足, ,记的前项和为,求证: .
【答案】(I);(II);(III)证明见解析.
【解析】试题分析:(Ⅰ)求出,在定义域内,分别令求得的范围,可得函数增区间, 求得的范围,可得函数的减区间;(Ⅱ)当时,因为,所以显然不成立,先证明因此时, 在上恒成立,再证明当时不满足题意,从而可得结果;(III)先求出等差数列的前项和为,结合(II)可得,各式相加即可得结论.
试题解析:(Ⅰ)由,得.所以
令,解得或(舍去),所以函数的单调递减区间为 .
(Ⅱ)由得,
当时,因为,所以显然不成立,因此.
令,则,令,得.
当时, , ,∴,所以,即有.
因此时, 在上恒成立.
②当时, , 在上为减函数,在上为增函数,
∴,不满足题意.
综上,不等式在上恒成立时,实数的取值范围是.
(III)证明:由知数列是的等差数列,所以
所以
由(Ⅱ)得, 在上恒成立.
所以. 将以上各式左右两边分别相加,得
.因为
所以
所以.
【题型】解答题
【结束】
22
【题目】已知直线, (为参数, 为倾斜角).以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的直角坐标方程为.
(Ⅰ)将曲线的直角坐标方程化为极坐标方程;
(Ⅱ)设点的直角坐标为,直线与曲线的交点为、,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】以下命题为假命题的是( )
A. “若m>0,则方程x2+x-m=0有实数根”的逆命题
B. “面积相等的三角形全等”的否命题
C. “若xy=1,则x,y互为倒数”的逆命题
D. “若A∪B=B,则AB”的逆否命题
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题共13分)
已知, 或1, ,对于, 表示U和V中相对应的元素不同的个数.
(Ⅰ)令,存在m个,使得,写出m的值;
(Ⅱ)令,若,求证: ;
(Ⅲ)令,若,求所有之和.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=,g(x)=(a>0,且a≠1).
(1)求函数φ(x)=f(x)+g(x)的定义域;
(2)试确定不等式f(x)≤g(x)中x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com