0  429804  429812  429818  429822  429828  429830  429834  429840  429842  429848  429854  429858  429860  429864  429870  429872  429878  429882  429884  429888  429890  429894  429896  429898  429899  429900  429902  429903  429904  429906  429908  429912  429914  429918  429920  429924  429930  429932  429938  429942  429944  429948  429954  429960  429962  429968  429972  429974  429980  429984  429990  429998  447090 

9、过双曲线=1外一点P(x,y)的直线与双曲线只有一个公共点的情况如下:

(1)    P点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条。(2)P点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条。(3)P在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线。(4)P为原点时不存在这样的直线。

此外:P点在双曲线内时,只有两条与渐近线平行的直线。P在双曲线上时有三条:二条是与渐近线平行的直线,一条是切线。

如:过点(0,2)与双曲线有且仅有一个公共点的直线的斜率的取值范围为______

试题详情

8、过双曲线=1上一点P(x,y)的切线方程是(与椭圆类似,求导数可得斜率。)

试题详情

7、双曲线的第二定义:平面内与一个定点F和一条定直线l的距离的比是常数e(e>1)的动点的轨迹叫双曲线。

试题详情

6、双曲线:=1按=(x,y)平移得(它的中心、对称轴、焦点、准线方程都按=(x,y)作了相应的平移。

试题详情

5、弦长公式:(1)通径长: |AB|=,是同支上过焦点的所有弦中最短的,注:实轴是异支上过焦点的所有弦中最短的。通径(推广为焦径)为直径的圆和相应的准线对双曲线是相交。(2)过焦点的弦长:|AB|=|e(x+x)|,(3)一般的弦长公式:类似于椭圆,x,x分别为弦PQ的横坐标,弦PQ所在直线方程为y=kx+b,代入双曲线方程整理得Ax+Bx+C=0,则,若y,y分别为弦PQ的纵坐标,则

试题详情

4、双曲线的几何性质:对于双曲线

(1)、它的顶点为(-a,0),(a,0),取值范围:x≤-a或x≥a,y∈R,焦点F (-C,0),  F(C,0),对称轴是坐标轴,对称中心是原点。(2)、准线方程:x=

(3)、离心率:e=>1,e越大,开口越大,e越小,开口越小。

(4)、渐近线:=0(或),已知渐近线方程为

(5)、共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线。=1与=1互为共轭双曲线,它们有相同的渐近线。

(AB>0),(6)、等轴双曲线:实轴与虚轴相等的双曲线,表示为,P为等轴双曲线上一点,则(由焦半径公式和两点间的距离公式可得),等轴双曲线的渐近线为y=x,离心率e=

(7)、焦半径公式:|PF|=ex+a, |PF|=ex-a(P在右支上,左加右减),若P在左支上则取相应的相反数。即:|PF|=-(ex+a), |PF|=-(ex-a),焦半径为直径的圆和实轴为直径的圆相切(内切或外切)。

试题详情

3、与椭圆类似对于双曲线的焦点三角形有:(1)(根据余弦定理可得)(2),(3)双曲线的焦点三角形的内心的横坐标为a或-a.由切线长定理和双曲线的第一定义,联合可得。

试题详情

2、双曲线的标准方程:中心在原点,(1)焦点在x轴上: =1(2)焦点在y轴上:=1(a﹥0,b﹥0)与判断椭圆方程中焦点位置不同的是,双曲线不是通过比较x,y系数的大小,而是看x,y的系数的正负号,焦点在系数为正的坐标轴上,简称为“焦点在轴看正号”与椭圆另一个区别在于:的关系是c=a+b(而不是c=a-b)

试题详情

1、双曲线的定义:平面内与两定点F,F的距离的差的绝对值等于定长2a(小于|FF|)的点的轨迹叫双曲线,即||PF|-|PF||=2a(2a<|FF|。此定义中,“绝对值”与2a<|FF|,不可忽视。若2a=|FF|,则轨迹是以F,F为端点射线,若2a﹥|FF|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

试题详情

13、椭圆(a﹥b﹥0)按=(x,y)平移得(它的中心、对称轴、焦点、准线方程都按=(x,y)作了相应的平移。

试题详情


同步练习册答案