相关习题
 0  364880  364888  364894  364898  364904  364906  364910  364916  364918  364924  364930  364934  364936  364940  364946  364948  364954  364958  364960  364964  364966  364970  364972  364974  364975  364976  364978  364979  364980  364982  364984  364988  364990  364994  364996  365000  365006  365008  365014  365018  365020  365024  365030  365036  365038  365044  365048  365050  365056  365060  365066  365074  366461 

科目: 来源: 题型:

【题目】如图,在梯形ABCD中,ADBCBC=BD=10CD=4AD=6.点P是线段BD上的动点,点EQ分别是线段DABD上的点,且DE=DQ=BP,联结EPEQ

1)求证:EQDC

2)如果△EPQ是以EQ为腰的等腰三角形,求线段BP的长;

3)当BP=m0<m<5)时,求∠PEQ的正切值.(用含m的式子表示)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线x轴交于AB两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(10).

1)求该抛物线的表达式及顶点坐标;

2)点P为抛物线上一点(不与点A重合),联结PC.当∠PCB=ACB时,求点P的坐标;

3)在(2)的条件下,将抛物线沿平行于轴的方向向下平移,平移后的抛物线的顶点为点D,点P关于x轴的对应点为点Q,当ODDQ时,求抛物线平移的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,在△ABC中,点D在边BC上,AEBCBEADAC分别相交于点FG

1)求证:△CAD∽△CBG

2)联结DG,求证:

查看答案和解析>>

科目: 来源: 题型:

【题目】水城门位于淀浦河和漕港河三叉口,是环城水系公园淀浦河梦蝶岛区域重要的标志性景观.在课外实践活动中,某校九年级数学兴趣小组决定测量该水城门的高.他们的操作方法如下:如图,先在D处测得点A的仰角为20°,再往水城门的方向前进13米至C处,测得点A的仰角为31°(点DCB在一直线上),求该水城门AB的高.(精确到0.1米)

(参考数据:sin20°≈0.34cos20°≈0.94tan20°≈0.36sin31°≈0.52cos31°≈0.86tan31°≈0.60

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90AC=2BC=3.点DAC的中点,联结BD,过点CCGBD,交AC的垂线AG于点GGC分别交BABD于点FE

1)求GA的长;

2)求△AFC的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,二次函数yax2+bx+ 的图象经过A(﹣10),B30),与y轴相交于点C.点P为第一象限的抛物线上的一个动点,过点P分别做BCx轴的垂线,交BC于点EF,交x轴于点MN

1)求这个二次函数的解析式;

2)求线段PE最大值,并求出线段PE最大时点P的坐标;

3)若SPMN3SPEF时,求出点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读材料:各类方程的解法

求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于去分母可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.

转化的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0x2+x-2=0,可得方程x3+x2-2x=0的解.

(1)问题:方程x3+x2-2x=0的解是x1=0,x2=x3=

(2)拓展:用转化思想求方程的解;

(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD平分∠ACBAED,且∠CDE=60°.

(1)求证:△CBE为等边三角形;

(2)若AD=5,DE=7,求CD的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校准备采购一批茶艺耗材和陶艺耗材.经查询,如果按照标价购买两种耗材,当购买茶艺耗材的数量是陶艺耗材数量的2倍时,购买茶艺耗材共需要18000元,购买陶艺耗材共需要12000元,且一套陶艺耗材单价比一套茶艺耗材单价贵150.

1)求一套茶艺耗材、一套陶艺耗材的标价分别是多少元?

2)学校计划购买相同数量的茶艺耗材和陶艺耗材.商家告知,因为周年庆,茶艺耗材的单价在标价的基础上降价2元,陶艺素材的单价在标价的基础降价150元,该校决定增加采购数量,实际购买茶艺素材和陶艺素材的数量在原计划基础上分别增加了2.5%,结果在结算时发现,两种耗材的总价相等,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线y=x+1x轴,y轴分别交于BA两点,动点P在线段AB上移动,以P为顶点作OPQ=45°x轴于点Q

1)求点A和点B的坐标;

2)比较AOPBPQ的大小,说明理由.

3)是否存在点P,使得OPQ是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案