题目列表(包括答案和解析)
18.(浙江卷)若多项式
(A)9 (B)10 (C)-9 (D)-10
[考点分析]本题考查二项式展开式的特殊值法,基础题。
解析:令,得,
令,得
17.(天津卷)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )
A.10种 B.20种 C.36种 D.52种
解析:将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,分情况讨论:①1号盒子中放1个球,其余3个放入2号盒子,有种方法;②1号盒子中放2个球,其余2个放入2号盒子,有种方法;则不同的放球方法有10种,选A.
16.(山东卷)已知()的展开式中第三项与第五项的系数之比为,则展开式中常数项是
(A)-1 (B)1 (C)-45 (D)45
解:第三项的系数为,第五项的系数为,由第三项与第五项的系数之比为可得n=10,则=,令40-5r=0,解得r=8,故所求的常数项为=45,选D
15.(山东卷)已知的展开式中第三项与第五项的系数之比为-,其中=-1,则展开式中常数项是
(A)-45i (B) 45i (C) -45 (D)45
解:第三项的系数为-,第五项的系数为,由第三项与第五项的系数之比为-可得n=10,则=,令40-5r=0,解得r=8,故所求的常数项为=45,选A
14.(山东卷)已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为
(A)33 (B) 34 (C) 35 (D)36
解:不考虑限定条件确定的不同点的个数为=36,但集合B、C中有相同元素1,由5,1,1三个数确定的不同点的个数只有三个,故所求的个数为36-3=33个,选A
13.(全国II)5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有
(A)150种 (B)180种 (C)200种 (D)280种
解:人数分配上有1,2,2与1,1,3两种方式,若是1,2,2,则有=60种,若是1,1,3,则有=90种,所以共有150种,选A
12.(全国卷I)在的展开式中,的系数为
A. B. C. D.
解析:在的展开式中,x4项是=-15x4,选C.
11.(全国卷I)设集合。选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有
A. B. C. D.
解析:若集合A、B中分别有一个元素,则选法种数有=10种;若集合A中有一个元素,集合B中有两个元素,则选法种数有=10种;若集合A中有一个元素,集合B中有三个元素,则选法种数有=5种;若集合A中有一个元素,集合B中有四个元素,则选法种数有=1种;若集合A中有两个元素,集合B中有一个元素,则选法种数有=10种;若集合A中有两个元素,集合B中有两个个元素,则选法种数有=5种;若集合A中有两个元素,集合B中有三个元素,则选法种数有=1种;若集合A中有三个元素,集合B中有一个元素,则选法种数有=5种;若集合A中有三个元素,集合B中有两个元素,则选法种数有=1种;若集合A中有四个元素,集合B中有一个元素,则选法种数有=1种;总计有,选B.
解法二:集合A、B中没有相同的元素,且都不是空集,
从5个元素中选出2个元素,有=10种选法,小的给A集合,大的给B集合;
从5个元素中选出3个元素,有=10种选法,再分成1、2两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有2×10=20种方法;
从5个元素中选出4个元素,有=5种选法,再分成1、3;2、2;3、1两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有3×5=15种方法;
从5个元素中选出5个元素,有=1种选法,再分成1、4;2、3;3、2;4、1两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有4×1=4种方法;
总计为10+20+15+4=49种方法。选B.
10.(辽宁卷)的值为( )
A.61 B.62 C.63 D.64
解:原式=,选B
9.(江西卷)在的二项展开式中,若常数项为,则等于( )
A. B. C. D.
解:,由解得n=6故选B
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com