1、从受力和运动两个方面分析简谐运动的特点及简谐运动中能量转化。
2. 人造地球卫星
⑴宇宙速度
第一宇宙速度
,是地球卫星的最小发射速度,也是地球卫星在近地轨道上运行时的速度.
由
得
.
例7、1990年3月,紫金山天文台将1965年9月20日发现的第2752号小行星命名为吴健雄星,其直径为32 km,如该小行星的密度和地球相同,则其第一宇宙速度为
m/s,已知地球半径R=6400km,地球的第一宇宙速度为8 km/s.(20m/s)
第二宇宙速度的计算
如果人造卫星进入地面附近的轨道速度等于或大于1l.2km/s,就会脱离地球的引力,这个速度称为第二宇宙速度.
为了用初等数学方法计算第二宇宙速度,设想从地球表面至无穷远处的距离分成无数小段ab、bc、…,等分点对应的半径为r1、r2…,如下图所示.
由于每一小段ab、bc、cd…极小,这一小段上的引力可以认为不变.因此把卫星从地表a送到b时,外力克服引力做功
![]()
同理,卫星从地表移到无穷远过程中,各小段上外力做的功分别为
![]()
![]()
…
![]()
![]()
把卫星送至无穷远处所做的总功 ![]()
为了挣脱地球的引力卫星必须具有的动能为![]()
所以![]()
第三宇宙速度的推算
脱离太阳引力的速度称为第三宇宙速度.因为地球绕太阳运行的速度为v地=30km/s,根据推导第二宇宙速度得到的脱离引力束缚的速度等于在引力作用下环绕速度的
倍,即![]()
因为人造天体是在地球上,所以只要沿地球运动轨道的方向增加△v=12.4km/s即可,即需增加动能
.所以人造天体需具有的总能量为
![]()
得第三宇宙速度![]()
1. 万有引力定律提供天体做圆周运动的向心力
⑴人造地球卫星的绕行速度、角速度、周期与半径的关系
①由
得
r越大,v越小
②由
得
r越大,ω越小
③由
得
r越大,T越大
例4、土星外层上有一个环。为了判断它是土星的一部分还是土星的卫星群,可以测量环中各层的线速度a与该l层到土星中心的距离R之间的关系来判断: ( AD )
A.若v∝R,则该层是土星的一部分; B.若v2∝R,则该层是土星的卫星群
C.若v∝1/R,则该层是土星的一部分 D.若v2∝1/R,则该层是土星的卫星群
⑵求天体质量、密度
由
即可求得
注意天体半径与卫星轨迹半径区别
⑶人造地球卫星的离心向心问题
例5、在地球大气层外有很多太空垃圾绕地球做匀速圆周运动,每到太阳活动期,由于受太阳的影响,地球大气层的厚度开始增加,从而使得部分垃圾进入大气层,开始做靠近地球的向心运动,产生这一结果的原因是 ( C )
A.由于太空垃圾受到地球引力减小而导致的向心运动
B.由于太空垃圾受到地球引力增大而导致的向心运动
C.由于太空垃圾受到空气阻力而导致的向心运动
D.地球引力提供了太空垃圾做圆周运动所需的向心力,故产生向心运动的结果与空气阻力无关
例6、宇宙飞船要与轨道空间站对接,飞船为了追上轨道空间站 ( A )
A.只能从较低轨道上加速
B.只能从较高轨道上加速
C.只能从同空间站同一高度轨道上加速
D.无论在什么轨道上,只要加速都行
5.物体在地面上所受的引力与重力的区别和联系
地球对物体的引力是物体具有重力的根本原因.但重力又不完全等于引力.这是因为地球在不停地自转,地球上的一切物体都随着地球自转而绕地轴做匀速圆周运动,这就需要向心力.这个向心力的方向是垂直指向地轴的,它的大小是
,式中的r是物体与地轴的距离,ω是地球自转的角速度.这个向心力来自哪里?只能来自地球对物体的引力F,它是引力F的一个分力如右图,引力F的另一个分力才是物体的重力mg.
在不同纬度的地方,物体做匀速圆周运动的角速度ω相同,而圆周的半径r不同,这个半径在赤道处最大,在两极最小(等于零).纬度为α处的物体随地球自转所需的向心力
(R为地球半径),由公式可见,随着纬度升高,向心力将减小,在两极处Rcosα=0,f=0.作为引力的另一个分量,即重力则随纬度升高而增大.在赤道上,物体的重力等于引力与向心力之差.即
.在两极,引力就是重力.但由于地球的角速度很小,仅为10-5rad/s数量级,所以mg与F的差别并不很大.
在不考虑地球自转的条件下,地球表面物体的重力
这是一个很有用的结论.
从图中还可以看出重力mg一般并不指向地心,只有在南北两极和赤道上重力mg才能向地心.
同样,根据万有引力定律知道,在同一纬度,物体的重力和重力加速度g的数值,还随着物体离地面高度的增加而减小.
若不考虑地球自转,地球表面处有
,可以得出地球表面处的重力加速度
.
在距地表高度为h的高空处,万有引力引起的重力加速度为g',由牛顿第二定律可得:
即![]()
如果在h=R处,则g'=g/4.在月球轨道处,由于r=60R,所以重力加速度g'= g/3600.
重力加速度随高度增加而减小这一结论对其他星球也适用.
例3、某行星自转一周所需时间为地球上的6h,在这行星上用弹簧秤测某物体的重量,在该行量赤道上称得物重是两极时测得读数的90%,已知万有引力恒量G=6.67×10-11N·m2/kg2,若该行星能看做球体,则它的平均密度为多少?
[解析]在两极,由万有引力定律得
①
在赤道
②
依题意mg'=O.9mg ③
由式①②③和球体积公式联立解得![]()
4.注意领会卡文迪许实验设计的巧妙方法.
由万有引力定律表达式
可知,
,要测定引力常量G,只需测出两物体m1、m2间距离r及它们间万有引力F即可.由于一般物体间的万有引力F非常小,很难用实验的方法显示并测量出来,所以在万有引力定律发现后的百余年间,一直没有测出引力常量的准确数值.
卡文迪许巧妙的扭秤实验通过多次“放大”的办法解决了这一问题.图是卡文迪许实验装置的俯视图.
首先,图中固定两个小球m的r形架,可使m、m’之间微小的万有引力产生较大的力矩,使金属丝产生一定角度的偏转臼,这是一次“放大”效应.
其次,为了使金属丝的微小形变加以“放大”,卡文迪许用从1发出的光线射到平面镜M上,在平面镜偏转θ角时,反射光线偏转2θ角,可以得出光点在刻度尺上移动的弧长s=2θR,增大小平面镜M到刻度尺的距离R,光点在刻度尺上移动的弧长S就相应增大,这又是一次“放大”效应.由于多次巧妙“放大”,才使微小的万有引力显示并测量出来.除“放大法”外,物理上观察实验效果的方法,还包括“转换法”、“对比法”等.
深刻认识卡文迪许实验的意义
(1)卡文迪许通过改变质量和距离,证实了万有引力的存在及万有引力定律的正确性.
(2)第一次测出了引力常量,使万有定律能进行定量计算,显示出真正的实用价值.
(3)标志着力学实验精密程度的提高,开创了测量弱力的新时代.
(4)表明:任何规律的发现总是经过理论上的推理和实验上的反复验证才能完成.
3.万有引力定律的适用条件
例1、如下图所示,在半径R=20cm、质量M=168kg的均匀铜球中,挖去一球形空穴,空穴的半径为要,并且跟铜球相切,在铜球外有一质量m=1kg、体积可忽略不计的小球,这个小球位于连接铜球球心跟空穴中心的直线上,并且在空穴一边,两球心相距是d=2m,试求它们之间的相互吸引力.
解: 完整的铜球跟小球m之间的相互吸引力为![]()
![]()
这个力F是铜球M的所有质点和小球m的所有质点之间引力的总合力,它应该等于被挖掉球穴后的剩余部分与半径为娄的铜球对小球m的吸引力 F=F1+F2.
式中F1是挖掉球穴后的剩余部分对m的吸引力,F2是半径为R/2的小铜球对m的吸引力。因为
,
所以挖掉球穴后的剩余部分对小球的引力为F1=F-F2=2.41×10-9N
例2、深入地球内部时物体所受的引力
假设地球为正球体,各处密度均匀.计算它对球外物体的引力,可把整个质量集中于球心.如果物体深入地球内部,如何计算它所受的引力?
如右图所示,设一个质量为m的物体(可视为质点)在地层内离地心为r的A处.为了计算地球对它的引力,把地球分成许多薄层.设过A点的对顶锥面上两小块体积分别为△V1、△V2.当△V1和△V2很小时,可以近似看成圆台.
已知圆台的体积公式
![]()
式中R1和R2分别是上、下两底面的半径.
当圆台很小很薄时,且H<< a,H<< b时,R1≈R2≈R.那么V=πHR2
根据万有引力定律
![]()
![]()
所以
,即两小块体积的物体对A处质点的引力大小相等,且方向相反,它们的合力为零.
当把地球分成许多薄层后,可以看到,位于A点以外的这一圈地层(右图中用斜线表示)对物体的引力互相平衡,相当于对A处物体不产生引力,对A处物体的引力完全由半径为r的这部分球体产生.引力大小为![]()
即与离地心的距离成正比.
当物体位于球心时,r=0,则Fr=O.它完全不受地球的引力.
所以,当一个质量为m的物体从球心(r=0)逐渐移到球外时,它所受地球的引力F随r的变化关系如右图所示.即先随r的增大正比例地增大;后随r的增大,按平方反比规律减小;当r=R0(地球半径)时,引力
.
2.万有引力定律的检验
牛顿通过对月球运动的验证,得出万有引力定律,开始时还只能是一个假设,在其后的一百多年问,由于不断被实践所证实,才真正成为一种理论.其中,最有效的实验验证有以下四方面.
⑴.地球形状的预测.牛顿根据引力理论计算后断定,地球的赤道部分应该隆起,形状像个橘子.而笛卡尔根据旋涡假设作出的预言,地球应该是两极伸长的扁球体,像个柠檬.
1735年,法国科学院派出两个测量队分赴亦道地区的秘鲁(纬度φ=20°)和高纬度处的拉普兰德(φ=66°),分别测得两地1°纬度之长为:赤道处是110600m,两极处是111900m.后来,又测得法国附近纬度1°的长度和地球的扁率.大地测量基本证实了牛顿的预言,从此,这场“橘子与柠檬”之争才得以平息.
⑵.哈雷彗星的预报.英国天文学家哈雷通过对彗星轨道的对照后认为,1682年出现的大彗星与1607年、1531年出现的大彗星实际上是同一颗彗星,并根据万有引力算出这个彗星的轨道,其周期是76年.哈雷预言,1758年这颗彗星将再次光临地球.于是,预报彗星的回归又一次作为对牛顿引力理论的严峻考验.
后来,彗星按时回归,成为当时破天荒的奇观,牛顿理论又一次被得到证实.
⑶.海王星的发现.
⑷.万有引力常量的测定.
由此可见,一个新的学说决不是一蹴而就的,也只有通过反复的验证,才能被人们所普遍接受.
1.万有引力定律发现的思路、方法
开普勒解决了行星绕太阳在椭圆轨道上运行的规律,但没能揭示出行星按此规律运动的原因.英国物理学家牛顿(公元1642-1727)对该问题进行了艰苦的探索,取得了重大突破.
首先,牛顿论证了行星的运行必定受到一种指向太阳的引力.
其次,牛顿进一步论证了行星沿椭圆轨道运行时受到太阳的引力,与它们的距离的二次方成反比.为了在中学阶段较简便地说明推理过程,课本中是将椭圆轨道简化为圆形轨道论证的.
第三,牛顿从物体间作用的相互性出发,大胆假设并实验验证了行星受太阳的引力亦跟太阳的质量成正比.因此得出:太阳对行星的行力跟两者质量之积成正比.
最后,牛顿做了著名的“月一地”检验,将引力合理推广到宇宙中任何两物体,使万有引力规律赋予普遍性.
例1 一电子在如图3-1所示按正弦规律变化的外力作用下由静止释放,则物体将:
A、作往复性运动
B、t1时刻动能最大
C、一直朝某一方向运动
D、t1时刻加速度为负的最大。
评析 电子在如图所示的外力作用下运动,根据牛顿第二定律知,先向正方向作加速度增大的加速运动,历时t1;再向正方向作加速度减小的加速运动,历时(t2~t1);(0~t2)整段时间的速度一直在增大。紧接着在(t2~t3)的时间内,电子将向正方向作加速度增大的减速运动,历时(t3~t2);(t3~t4)的时间内,电子向正方向作加速度减小的减速运动,根据对称性可知,t4时刻的速度变为0(也可以按动量定理得,0~t4时间内合外力的冲量为0,冲量即图线和坐标轴围成的面积)。其中(0~t2)时间内加速度为正;(t2~t4)时间内加速度为负。正确答案为:C。
注意 公式
中F、
间的关系是瞬时对应关系,一段时间内可以是变力;而公式
或
只适用于匀变速运动,但在变加速运动中,也可以用之定性地讨论变加速运动速度及位移随时间的变化趋势。
上题中,如果F-t图是余弦曲线如图3-2所示,则情况又如何?
如果F-t图是余弦曲线,则答案为A、B。
例2 如图3-3所示,两个完全相同的小球
和
,分别在光滑的水平面和浅凹形光滑曲面上滚过相同的水平距离,且始终不离开接触面。
球是由水平面运动到浅凹形光滑曲线面,再运动到水平面的,所用的时间分别为t1和t2,试比较t1、t2的大小关系:
A、t1>t2 B、t1=t2 C、t1<t2 D、无法判定
评析
小球滚下去的时候受到凹槽对它的支持力在水平向分力使之在水平方向作加速运动;而后滚上去的时候凹槽对它的支持力在水平方向分力使之在水平方向作减速运动,根据机械能守恒定律知,最后滚到水平面上时速度大小与原来相等。故
小球在整个过程中水平方向平均速度大,水平距离一样,则
所用时间短。答案:A。
例3 如图3-4所示,轻弹簧的一端固定在地面上,另一端与木块B相连。木块A放在B上。两木块质量均为
,竖直向下的力F作用在A上,A、B均静止,问:
(1)将力F瞬间撤去后,A、B共同运动到最高点,此时B对A的弹力多大?
(2)要使A、B不会分开、力F应满足什么条件?
评析 (1)如果撤去外力后,A、B在整个运动过程中互不分离,则系统在竖直向上作简揩运动,最低点和最高点关于平衡位置对称,如图3-5所示,设弹簧自然长度为
,A、B放在弹簧上面不外加压力F且系统平衡时,如果弹簧压至O点,压缩量为b,则:
。外加压力F后等系统又处于平衡时,设弹簧又压缩了A,则:
,即:
。
当撤去外力F后,系统将以O点的中心,以A为振幅在竖直平面内上下作简谐运动。在最低点:
,方向向上,利用牛顿第二定律知,该瞬间加速度:
,方向向上;按对称性知系统在最高点时:
,方向向下。
此时以B为研究对象进行受力分析,如图3-6所示,按牛顿第二定律得:
![]()
(2)A、B未分离时,加速度是一样的,且A、B间有弹力,同时最高点最容易分离。分离的临界条件是:
(或者:在最高点两者恰好分离时对A有:
,表明在最高点弹簧处于自然长度时将要开始分离,即只要:
时A、B将分离)。所以要使A、B不分离,必须:
。
例4 如图3-7所示,在空间存在水平方向的匀强磁场(图中未画出)和方向竖直向上的匀强电场(图中已画出),电场强度为E,磁感强度为B。在某点由静止释放一个带电液滴
,它运动到最低点恰与一个原来处于静止状态的带电液滴b相撞,撞后两液滴合为一体,并沿水平方向做匀速直线运动,如图所示,已知
的质量为b的2倍,
的带电量是b的4倍(设
、b间静电力可忽略)。
(1)试判断
、b液滴分别带何种电荷?
(2)求当
、b液滴相撞合为一体后,沿水平方向做匀速直线的速度
及磁场的方向;
(3)求两液滴初始位置的高度差
。
评析 (1)设b质量为
,则
带电量为4q,因为如果
带正电,
要向下偏转,则必须:
;而对b原来必须受力平衡,则:
。前后相矛盾,表明
带负电,b带正电。
(2)设
为
与b相撞前
的速度,
下落的过程中重力、电场力做正功,由动能定理有:
。由于b原来处于静止状态:
。
由以上两式可得:![]()
、b相撞的瞬间动量守恒:
。得![]()
而电荷守恒,故:![]()
![]()
、b碰撞后粘在一起做匀速直线运动,按平衡条件得:
,则:
。所以:![]()
例5 如图3-8所示,一单匝矩形线圈边长分别为
、b,电阻为R,质量为m,从距离有界磁场边界
高处由静止释放,试讨论并定性作出线圈进入磁场过程中感应电流随线圈下落高度的可能变化规律。
评析 线圈下落高度时速度为:![]()
下边刚进入磁场时切割磁感线产生的感应电动势:
。产生的感应电流:I=
,受到的安培力:![]()
讨论 (1)如果
,即:
,则:线圈将匀速进入磁场,此时:
(变化规律如图3-9所示)
(2)如果
,表明
较小,则:线圈加速进入磁场,但随着
有三种可能:
①线圈全部进入磁场时还未达到稳定电流I0(变化规律如图3-10所示)
②线圈刚全部进入磁场时达到稳定电流I0(变化规律如图3-11所示)
③线圈未全部进磁场时已达到稳定电流I0(变化规律如图3-12所示)
(3)如果
,则:线圈减速进入磁场,但随着
,故线圈将作
减小的减速运动。
有三种可能:
①线圈全部进入磁场时还未达到稳定电流I0(变化规律如图3-13所示)
②线圈刚全部进入磁场时达到稳定电流I0(变化规律如图3-14所示)
③线圈未全部进入磁场时已达到稳定电流I0(变化规律如图3-15所示)
例6 光从液面到空气时的临界角C为45°,如图3-16所示,液面上有一点光源S发出一束光垂直入射到水平放置于液体中且到液面的距离为d的平面镜M上,当平面镜M绕垂直过中心O的轴以角速度
做逆时针匀速转动时,观察者发现水面上有一光斑掠过,则观察者们观察到的光斑的光斑在水面上掠过的最大速度为多少?
评析 本题涉及平面镜的反射及全反射现象,需综合运用反射定律、速度的合成与分解、线速度与角速度的关系等知识求解,确定光斑掠移速度的极值点及其与平面镜转动角速度间的关系,是求解本例的关键。
设平面镜转过
角时,光线反射到水面上的P点,光斑速度为
,如图3-17可知:
,而:
![]()
故:
,
,而光从液体到空气的临界角为C,所以当
时达到最大值
,即:
![]()
例7 如图3-18所示为一单摆的共振曲线,则该单摆的摆长约为多少?共振时单摆的振幅多大?共振时摆球简谐运动的最大加速度和最大速度大小各为多少?(
取10m/s2)
评析 这是一道根据共振曲线所给信息和单摆振动规律进行推理和综合分析的题目,本题涉及到的知识点有受迫振动、共振的概念和规律、单摆摆球做简谐运动及固有周期、频率、能量的概念和规律等。由题意知,当单摆共振时频率
,即:
,振幅A=8cm=0.08m,由
得:![]()
如图3-19所示,摆能达到的最大偏角
的情况下,共振时:
,(其中
以弧度为单位,当
很小时,
,弦A近似为弧长。)所以:
。根据单摆运动过程中机械能守恒可得:
。其中:
![]()
例8
已知物体从地球上的逃逸速度(第二宇宙速度)
,其中G、ME、RE分别是引力常量、地球的质量和半径。已知G=6.7×10-11N·m2/kg2,c=3.0×108m/s,求下列问题:(1)逃逸速度大于真空中光速的天体叫做黑洞,设某黑洞的质量等于太阳的质量M=2.0×1030kg,求它的可能最大半径(这个半径叫Schwarhid半径);(2)在目前天文观测范围内,物质的平均密度为10-27kg/m3,如果认为我们的宇宙是这样一个均匀大球体,其密度使得它的逃逸速度大于光在真空中的速度c,因此任何物体都不能脱离宇宙,问宇宙的半径至少多大?(最后结果保留两位有效数字)
解析 (1)由题目所提供的信息可知,任何天体均存在其所对应的逃逸速度
,其中M、R为天体的质量和半径,对于黑洞模型来说,其逃逸速度大于真空中的光速,即
,所以:![]()
即质量为
kg的黑洞的最大半径为
(m)
(2)把宇宙视为一普通天体,则其质量为
,其中R为宇宙的半径,
为宇宙的密度,则宇宙所对应的逃逸速度为
,由于宇宙密度使得其逃逸速度大于光速c。即:
。则由以上三式可得:
,合4.2×1010光年。即宇宙的半径至少为4.2×1010光年。
所谓变加速运动,即加速度(大小或方向或两者同时)变化的运动,其轨迹可以是直线,也可以是曲线;从牛顿第二定律的角度来分析,即物体所受的合外力是变化的。
本章涉及的中学物理中几种典型的变加速运动如:简谐运动,圆周运动,带电粒子在电场、磁场和重力场等的复合场中的运动,原子核式结构模型中电子绕原子核的圆周运动等。故涉及到力学、电磁学及原子物理中的圆周运动问题。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com