0  440353  440361  440367  440371  440377  440379  440383  440389  440391  440397  440403  440407  440409  440413  440419  440421  440427  440431  440433  440437  440439  440443  440445  440447  440448  440449  440451  440452  440453  440455  440457  440461  440463  440467  440469  440473  440479  440481  440487  440491  440493  440497  440503  440509  440511  440517  440521  440523  440529  440533  440539  440547  447090 

[例1]求角(用反三角函数表示):

(1)已知tanx=3,x∈[0.2π]求x的值;

(2)已知cos2α=,α∈(0,),sinβ=-,β∈(π,  )

求α+β.

解:(1)在上,时,tanx=3;

上,,

x=arctan3或π+arctan3.

(2)由;

sinα=,从而cosα=,且cosβ=-

又α+β∈(π,2π)?

cos(α+β)=cosαcosβ-sinαsinβ=-.

∴α+βπ=

即α+β=2π-arccos

提炼方法:求角先求三角函数值,求什么三角函数值要先看角的范围,如本题(2)应求余弦而不能求正弦.角不在主值区间时,要借助图象、三角函数线或诱导公式写出符合条件的角。

[例2](2007启东质检)已知A、B、C是三内角,向量

(1)求角A;

(2)若,求

解:(1)∵,即

,

,∴,∴

(2)由题知,整理得

,∴,∴

使,舍去,∴

   

 

[例3]在某海滨城市附近海面有一台风,据检测,当前台

风中心位于城市O(如图)的东偏南方向

300 km的海面P处,并以20 km / h的速度向西偏北

方向移动,台风侵袭的范围为圆形区域,当前半径为60 km ,

并以10 km / h的速度不断增加,问几小时后该城市开始受到

台风的侵袭。

解法一:设在时刻t(h)台风中心为Q,此时台风侵袭的圆形区域半径为10t+60(km)

若在时刻t城市O受到台风的侵袭,则

由余弦定理知

由于PO=300,PQ=20t

因此

解得

解法二:如图建立坐标系:以O为原点,正东方向为x轴正向. 在时刻:t(h)台风中心的坐标为

  此时台风侵袭的区域是,其中t+60,

  若在t时,该城市O受到台风的侵袭,则有

,  解得.

答:12小时后该城市开始受到台风气侵袭

提炼方法:实际应用问题,要从中找出题中的三角形和已知的边角等条件,再设计出合理的解题方案。

[例4]已知函数的图象向右平移个单位得到函数的图象.  ⑴求函数的表达式;

⑵证明当时,经过函数图象上任意两点的直线的斜率恒大于零.

解:(I)

(II)证明一:依题意,只需证明函数g(x)当时是增函数

的每一个区间上是增函数

时,是增函数,则当时,经过函数g(x)图像上任意两点的直线的斜率恒大于零

[研讨.欣赏]某城市有一条公路,自西向东经过A点到市中心O点后转向东北方向OB,现要修建一条铁路LLOA上设一站A,在OB上设一站B,铁路在AB部分为直线段,现要求市中心OAB的距离为10 km,问把AB分别设在公路上离中心O多远处才能使|AB|最短?并求其最短距离.(不要求作近似计算)

解:在△AOB中,设OA=aOB=b.

因为AO为正西方向,OB为东北方向,所以∠AOB=135°.

OAB的距离为10.

设∠OAB=α,则∠OBA=45°-α.

所以a=b=

ab=·

=

=

=

当且仅当α=22°30′ 时,“=”成立.

所以|AB|2=400(+1)2

当且仅当a=bα=22°30′时,“=”成立.

所以当a=b==10时,即当AB分别在OAOB上离O点10 km处,能使|AB|最短,最短距离为20(-1).

法二;

法三:|AB|2=a2+b2-2abcos135°=a2+b2+ab≥2ab+ab=(2+)ab,…

温馨提示:1.若直接建立|AB|2与角α的函数关系,求最值值困难;

2.先视|AB|2为a,b的函数放缩,再把ab看成α的函数求出最小值;

试题详情

4.作CE⊥平面ABDE,则∠CDE=40°,延长DE交直线ABF,则∠CFD是遮阳棚与地面所成的角,在△CFD中,=.∴DF=.当α=50°时,DF最大.答案:C;  5.; 6. 最大值为1+=.

试题详情

3.sinA2=cosA1,……A1、B1、C1是锐角。如果A2、B2、C2也是锐角,则矛盾,故选D。

试题详情

6.(2004北京西城二模)函数y=sinx(sinx+cosx)(xR)的最大值是_______.

答案:1-4.CBDC; 2.A+B.∴ABB-A.

∴sinA>cosB,sinB>cosA.,P在第二象限.

试题详情

5.(2003上海)若x=是方程2cos(x+α)=1的解,其中α∈(0,2π),则α=_________.

试题详情

4. 如图,△ABC是简易遮阳棚,AB是南北方向上两个定点,正东方向射出的太阳光线与地面成40°角,为了使遮阴影面ABD面积最大,遮阳棚ABC与地面所成的角为

A.75°          B.60°      C.50°      D.45°

试题详情

3.的三个内角的余弦值分别等于的三个内角的正弦值,则(  )

A.都是锐角三角形

B.都是钝角三角形

C.是钝角三角形,是锐角三角形

D.是锐角三角形,是钝角三角形

试题详情

2.若AB是锐角△ABC的两个内角,则点P(cosB-sinA,sinB-cosA)在(  )

A.第一象限   B.第二象限  C.第三象限  D.第四象限

试题详情

1. 已知,则x等于  (  )

 

试题详情

4.在应用与综合性题目中,当角不是特殊角,要“用反三角函数表示角”:

(1)

(2)arccosa表示[0,π]上余弦值等于a的角,a∈[-1,1];

(3)

(4) 对于不是上述范围内的角,可借助诱导公式和三角函数线,找出与上述反三角的关系进而求出. 例如:sinα=0.3, α是钝角,则α=π-arcsin0.3.

试题详情


同步练习册答案