363. 湖结冰时,一个球漂在其上,取出后(未弄破冰),冰面上留下了一个直径为24cm,深为8cm的空穴,求该球的半径.
解析:设球的半径为R,依题意知截面圆的半径r=12,球心与截面的距离为d=R-8,由截面性质得:r2+d2=R2,即122+(R-8)2=R2.
得R=13 ∴该球半径为13cm.
362. 若四面体各棱长是1或2,且该四面体不是正四面体,则其体积的值是 .(只须写出一个可能的值)
解析: 该题的显著特点是结论发散而不惟一.本题表面上是考查锥体求积公式这个知识点,实际上主要考查由所给条件构造一个四面体的能力,首先得考虑每个面的三条棱是如何构成的.
排除{1,1,2},可得{1,1,1},{1,2,2},{2,2,2},然后由这三类面在空间构造满足条件的一个四面体,再求其体积.
由平时所见的题目,至少可构造出二类满足条件的四面体,五条边为2,另一边为1,对棱相等的四面体.
对于五条边为2,另一边为1的四面体,参看图1所示,设AD=1,取AD的中点为M,平面BCM把三棱锥分成两个三棱锥,由对称性可知AD⊥面BCM,且VA-BCM=VD-BCM,所以
VABCD=SΔBCM·AD.
CM===.设N是BC的中点,则MN⊥BC,MN===,从而SΔBCM=×2×=,
故VABCD=××1=.
对于对棱相等的四面体,可参见图2.其体积的计算可先将其置于一个长方体之中,再用长方体的体积减去四个小三棱锥的体积来进行.亦可套公式V=·,
不妨令a=b=2,c=1,则
V=·
=·=.
361. 有一个三棱锥和一个四棱锥,棱长都相等,将它们一个侧面重叠后,还有几个暴露面?
解析:有5个暴露面.
如图所示,过V作VS′∥AB,则四边形S′ABV为平行四边形,有∠S′VA=∠VAB=60°,从而ΔS′VA为等边三角形,同理ΔS′VD也是等边三角形,从而ΔS′AD也是等边三角形,得到以ΔVAD为底,以S′与S重合.
这表明ΔVAB与ΔVSA共面,ΔVCD与ΔVSD共面,故共有5个暴露面.
99. 已知:如图,平面a ∩平面b =直线l,A∈a ,AB⊥b ,B∈b ,BC⊥a ,C∈a,求证:AC⊥l.
证明:∵ AB⊥b ,lb
∴ l⊥AB
∵ BC⊥a ,la
∴ l⊥BC
∵ AB∩BC=B
∴ l⊥平面ABC
∵ AC平面ABC
∴ l⊥AC
100. 已知:如图,P 试题详情
98. 已知ABCD是矩形,SA⊥平面ABCD,M、N分别是SC、AB的中点.
求证:MN⊥AB.
解析:连结MB、MA,证明MB=MA.
97. 已知:如图,AS⊥平面SBC,SO⊥平面ABC于O,
求证:AO⊥BC.
解析:连结AO,证明BC⊥平面ASO.
96. 已知PA,PB,PC与平面α所成的角分别为60°,45°,30°,PO⊥平面α,O为垂足,又斜足A,B,C三点在同一直线上,且AB=BC=10cm,求PO的长.
解析:
95. 已知:ABCD是矩形,SA⊥平面ABCD,E是SC上一点.
求证:BE不可能垂直于平面SCD.
解析:用到反证法,假设BE⊥平面SCD,
∵ AB∥CD;∴AB⊥BE.
∴ AB⊥SB,这与Rt△SAB中∠SBA为锐角矛盾.
∴ BE不可能垂直于平面SCD.
94. 已知E,F分别是正方形ABCD边AD,AB的中点,EF交AC于M,GC垂直于ABCD所在平面.
(1)求证:EF⊥平面GMC.
(2)若AB=4,GC=2,求点B到平面EFG的距离.
解析:第1小题,证明直线与平面垂直,常用的方法是判定定理;第2小题,如果用定义来求点到平面的距离,因为体现距离的垂线段无法直观地画出,因此,常常将这样的问题转化为直线到平面的距离问题.
解:
(1)连结BD交AC于O,
∵E,F是正方形ABCD边AD,AB的中点,AC⊥BD,
∴EF⊥AC.
∵AC∩GC=C,
∴EF⊥平面GMC.
(2)可证BD∥平面EFG,由例题2,正方形中心O到平面EFG
93. 如图,在正方体ABCD-A1B1C1D1中,点N在BD上,点M在B1C上,并且CM=DN.
求证:MN∥平面AA1B1B.
解析:本题是把证“线面平行”转化为证“线线平行”,即在平面ABB1A1内找一条直线与MN平行,除上面的证法外,还可以连CN并延长交直线BA于点P,连B1P,就是所找直线,然后再设法证明MN∥B1P.
分析二:要证“线面平行”也可转化为证“面面平行”,因此,本题也可设法过MN作一个平面,使此平面与平面ABB1A1平行,从而证得MN∥平面ABB1A1.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com