题目列表(包括答案和解析)

 0  446627  446635  446641  446645  446651  446653  446657  446663  446665  446671  446677  446681  446683  446687  446693  446695  446701  446705  446707  446711  446713  446717  446719  446721  446722  446723  446725  446726  446727  446729  446731  446735  446737  446741  446743  446747  446753  446755  446761  446765  446767  446771  446777  446783  446785  446791  446795  446797  446803  446807  446813  446821  447348 

3、掌握对数的运算性质;

试题详情

2、能进行对数式与指数式的互化;

试题详情

1、理解对数概念;

试题详情

2.利用平行平面间的距离确定    如图8,把平面EFG补成一个正四棱柱的截面所在的平面,可使题设中的点、线、面之间的位置关系更加明朗.面GMT是正四棱柱ABCD-A1B1GD1经过F、E、G的截面所在的平面.MG交BB1于N,TG交DD1于Q,作BP∥MG,交CG于P,连结DP,则有平面GTM∥平面PDB.它们之间的距离就是所求之距离.于是可以把点B平移到平面PDB上任何一个位置,哪里方便就在哪里求.    这两个平行平面的距离d又同三棱柱GQN-PDB的体积有关,所以也可以利用三棱柱的体积确定所求之距离.据此可得解法6.    解法6.三棱柱GQN-PDB的体积V=SPDB·d,另一方面又有V=SCDB·BN,可求得BN=2/3,CP=4/3,PB=PD=,BD=,SPDB,SCDB=8,所以·d=8·23,得d=为所求之距离.

试题详情

2.不直接作出所求之距离,间接求之.     (1)利用二面角的平面角.    课本P.42第4题,P.46第2题、第4题给出了“二面角一个面内的一个点,它到棱的距离、到另一个面的距离与二面角的大小之间所满足的关系”.如图2,二面角M-CD-N的大小为α,A∈M,AB⊥CD,AB=a,点A到平面N的距离AO=d, 则有d=asinα. ① ①中的α也就是二面角的大小,而并不强求要作出经过AB的二面角的平面角.    解法2.如图3,过B作BP⊥EF,交FE的延长线于P,易知BP=,这就是点B到二面角C-EF-G的棱EF的距离.连结AC交EF于H,连结GH,易证∠GHC就是二面角C-EF-G的平面角.∵   GC=2,AC=4,AH=,∴   CH=3,GH=,sin∠GHC=2/,于是由①得所求之距离d=BP·sin∠GHC=· .解略.

   (2)利用斜线和平面所成的角.    如图4,OP为平面α的一条斜线,A∈OP,OA=l,OP与α所成的角为θ,A到平面α的距离为d,则由斜线和平面所成的角的定义可知,有d=lsinθ.② 经过OP与α垂直的平面与α相交,交线与OP所成的锐角就是②中的θ,这里并不强求要作出点A在α上的射影B,连结OB得θ.    解法3.如图5,设M为FE与CB的延长线的交点,作BR⊥GM,R为垂足.又GM⊥EB,易得平面BER⊥平面EFG,ER为它们的交线,所以∠REB就是EB与平面EFG所成的角θ.由△MRB∽△MCG,可得BR=,在Rt△REB中,∠B=90°,BR=,EB=2,所以sinθ=BR/ER=,于是由②得所求之距离d=



图5
图6

   (3)利用三棱锥的体积公式.    解法4.如图6,设点B到平面EFG的距离为d,则三棱锥B-EFG的体积V=(1/3)S△EFG·d.另一方面又可得这个三棱锥的体积V=(1/3)S△FEB·CG,可求得S△FEB=(1/4)S△DAB=2,S△EFG,所以有1/3··d=1/3·2·2,得d=.     二、不经过该点间接确定点到平面的距离   1.利用直线到平面的距离确定    解法5.如图7,易证BD∥平面EFG,所以BD上任意一点到平面EFG的距离就是点B到平面EFG的距离.由对称思想可知,取BD中点O,求点O到平面EFG的距离较简单.AC交EF于H,交BD于O.易证平面GHC⊥平面EFG,作OK⊥HG,K为垂足,OK=为所求之距离.



图7
图8

试题详情

2.不直接作出所求之距离,间接求之.     (1)利用二面角的平面角.    课本P.42第4题,P.46第2题、第4题给出了“二面角一个面内的一个点,它到棱的距离、到另一个面的距离与二面角的大小之间所满足的关系”.如图2,二面角M-CD-N的大小为α,A∈M,AB⊥CD,AB=a,点A到平面N的距离AO=d, 则有d=asinα. ① ①中的α也就是二面角的大小,而并不强求要作出经过AB的二面角的平面角.    解法2.如图3,过B作BP⊥EF,交FE的延长线于P,易知BP=,这就是点B到二面角C-EF-G的棱EF的距离.连结AC交EF于H,连结GH,易证∠GHC就是二面角C-EF-G的平面角.∵   GC=2,A求点到平面的距离是立体几何教学中不可忽视的一个基本问题,是近几年高考的一个热点.本文试通过对一道典型例题的多种解法的探讨,结合《立体几何》(必修本)中的概念、习题,概括出求点到平面的距离的几种基本方法.    例已知ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GC垂直于ABCD所在平面,且GC=2,求点B到平面EFG的距离.    一、直接通过该点求点到平面的距离    1.直接作出所求之距离,求其长.    解法1.如图1,为了作出点B到平面EFG的距离,延长FE交CB的延长线于M, 连 结GM,作BN⊥BC,交GM于N,则有BN∥CG,BN⊥平面ABCD.作BP⊥EM,交EM于P,易证平面BPN⊥平面EFG.作BQ⊥PN,垂足为Q,则BQ⊥平面EFG.于 是BQ是点B到平面EFG的距离.易知BN=2/3,BP=,PN=,由BQ·PN=PB·BN,得BQ=



图1
图2

试题详情

18.若不等式对于任意正整数恒成立,则实数的取值范围是________.

江苏省盐城中学2005~2006学年度第一学期期中考试

试题详情

17.等差数列的前项和为,且若存在自然数,使得,当时,的大小关系为___________.

试题详情

16、已知两点,直线与直线的交点为,且分有向线段的比为,则=________.

试题详情

15、已知________.

试题详情


同步练习册答案