2.已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立,f(3)=-3.
(1)证明:函数y=f(x)是R上的减函数;
(2)证明:函数y=f(x)是奇函数;
(3)试求函数y=f(x)在[m,n](m,n∈Z)上的值域.
(1)证明 设x1,x2∈R,且x1<x2,f(x2)=f[x1+(x2-x1)]=f(x1)+f(x2-x1).
∵x2-x1>0,∴f(x2-x1)<0.∴f(x2)=f(x1)+f(x2-x1)<f(x1).
故f(x)是R上的减函数.
(2)证明 ∵f(a+b)=f(a)+f(b)恒成立,∴可令a=-b=x,则有f(x)+f(-x)=f(0),
又令a=b=0,则有f(0)=f(0)+f(0),∴f(0)=0.从而x∈R,f(x)+f(-x)=0,
∴f(-x)=-f(x).故y=f(x)是奇函数.
(3)解 由于y=f(x)是R上的单调递减函数,
∴y=f(x)在[m,n]上也是减函数,故f(x)在[m,n]上的最大值f(x)max=f(m),最小值f(x)min=f(n).
由于f(n)=f(1+(n-1))=f(1)+f(n-1)==nf(1),同理f(m)=mf(1).
又f(3)=3f(1)=-3,∴f(1)=-1,∴f(m)=-m,f(n)=-n.
∴函数y=f(x)在[m,n]上的值域为[-n,-m].
1.判断下列各函数的奇偶性:
(1)f(x)=(x-2);
(2)f(x)=;
(3)f(x)=
解 (1)由≥0,得定义域为[-2,2),关于原点不对称,故f(x)为非奇非偶函数.
(2)由得定义域为(-1,0)∪(0,1).
这时f(x)=.
∵f(-x)=-∴f(x)为偶函数.
(3)x<-1时,f(x)=x+2,-x>1,
∴f(-x)=-(-x)+2=x+2=f(x).
x>1时,f(x)=-x+2,
-x<-1,f(-x)=x+2=f(x).
-1≤x≤1时,f(x)=0,-1≤-x≤1,
f(-x)=0=f(x).
∴对定义域内的每个x都有f(-x)=f(x).
因此f(x)是偶函数.
5.(2009·文登月考)定义域为R的函数f(x)满足f(-4-x)=f(x+8),且y=f(x+8)为偶函数,则f(x) ( )
A.是周期为4的周期函数 ? B.是周期为8的周期函数
C.是周期为12的周期函数 D.不是周期函数
答案?C
例1 判断下列函数的奇偶性.
(1)f(x)=;
(2)f(x)=log2(x+) (x∈R);
(3)f(x)=lg|x-2|.
解 (1)∵x2-1≥0且1-x2≥0,∴x=±1,即f(x)的定义域是{-1,1}.
∵f(1)=0,f(-1)=0,∴f(1)=f(-1),f(-1)=-f(1),
故f(x)既是奇函数又是偶函数.
(2)方法一 易知f(x)的定义域为R,
又∵f(-x)=log2[-x+]=log2=-log2(x+)=-f(x),
∴f(x)是奇函数.
方法二 易知f(x)的定义域为R,
又∵f(-x)+f(x)=log2[-x+]+log2(x+)=log21=0,即f(-x)=-f(x),
∴f(x)为奇函数.
(3)由|x-2|>0,得x≠2.
∴f(x)的定义域{x|x≠2}关于原点不对称,故f(x)为非奇非偶函数.
例2 已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).
(1)求证:f(x)是奇函数;
(2)如果x∈R+,f(x)<0,并且f(1)=-,试求f(x)在区间[-2,6]上的最值.
(1)证明 ∵函数定义域为R,其定义域关于原点对称.
∵f(x+y)=f(x)+f(y),令y=-x,∴f(0)=f(x)+f(-x).令x=y=0,
∴f(0)=f(0)+f(0),得f(0)=0.∴f(x)+f(-x)=0,得f(-x)=-f(x),
∴f(x)为奇函数.
(2)解 方法一 设x,y∈R+,∵f(x+y)=f(x)+f(y),
∴f(x+y)-f(x)=f(y). ∵x∈R+,f(x)<0,
∴f(x+y)-f(x)<0, ∴f(x+y)<f(x).
∵x+y>x, ∴f(x)在(0,+∞)上是减函数.
又∵f(x)为奇函数,f(0)=0,
∴f(x)在(-∞,+∞)上是减函数.∴f(-2)为最大值,f(6)为最小值.
∵f(1)=-,∴f(-2)=-f(2)=-2f(1)=1,f(6)=2f(3)=2[f(1)+f(2)]=-3.
∴所求f(x)在区间[-2,6]上的最大值为1,最小值为-3.
方法二 设x1<x2,且x1,x2∈R.
则f(x2-x1)=f[x2+(-x1)]=f(x2)+f(-x1)=f(x2)-f(x1).
∵x2-x1>0,∴f(x2-x1)<0.∴f(x2)-f(x1)<0.即f(x)在R上单调递减.
∴f(-2)为最大值,f(6)为最小值.∵f(1)=-,
∴f(-2)=-f(2)=-2f(1)=1,f(6)=2f(3)=2[f(1)+f(2)]=-3.
∴所求f(x)在区间[-2,6]上的最大值为1,最小值为-3.
例3(12分)已知函数f(x)的定义域为R,且满足f(x+2)=-f(x)?.
(1)求证:f(x)是周期函数;
(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=x,求使f(x)=-在[0,2 009]上的所有x的个数.
(1)证明 ∵f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=-[-f(x)]=f(x), 2分
∴f(x)是以4为周期的周期函数. 3分
(2)解 当0≤x≤1时,f(x)=x,
设-1≤x≤0,则0≤-x≤1,∴f(-x)=(-x)=-x.
∵f(x)是奇函数,∴f(-x)=-f(x),
∴-f(x)=-x,即f(x)=x. 5分
故f(x)= x(-1≤x≤1) 6分
又设1<x<3,则-1<x-2<1,
∴f(x-2)=(x-2), 7分
又∵f(x-2)=-f(2-x)=-f((-x)+2)=-[-f(-x)]=-f(x),
∴-f(x)=(x-2),
∴f(x)=-(x-2)(1<x<3). 8分
∴f(x)= 9分
由f(x)=-,解得x=-1.
∵f(x)是以4为周期的周期函数.
故f(x)=-的所有x=4n-1 (n∈Z). 10分
令0≤4n-1≤2 009,则≤n≤,
又∵n∈Z,∴1≤n≤502 (n∈Z),
∴在[0,2 009]上共有502个x使f(x)=-. 12分
4.已知f(x)=是奇函数,则实数a的值等于 ( )
?A.1 B.-1 C.0 ?D.±1
答案?A?
3.设偶函数f(x)=loga|x-b|在(-∞,0)上单调递增,则f(a+1)与f(b+2)的大小关系为 ( )
A.f(a+1)≥f(b+2) B.f(a+1)≤f(b+2)
C.f(a+1)<f(b+2)? D.f(a+1)>f(b+2)
答案?D?
2.已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),则f(6)的值为 ( )
?A.-1 B.0 C.1? D.2
答案?B?
1.(2008·福建理,4)函数f(x)=x3+sinx+1(x∈R),若f(a)=2,则f(-a)的值为 ( )
? A.3 ?B.0 C.-1 D.-2
答案?B?
12.已知函数y=f(x)对任意x,y∈R均有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-.
(1)判断并证明f(x)在R上的单调性;
(2)求f(x)在[-3,3]上的最值.
解 (1)f(x)在R上是单调递减函数
证明如下:
令x=y=0,f(0)=0,令x=-y可得:f(-x)=-f(x),在R上任取x1<x2,则x2-x1>0,
∴f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1).又∵x>0时,f(x)<0,
∴f(x2-x1)<0,即f(x2)<f(x1).由定义可知f(x)在R上为单调递减函数.
(2)∵f(x)在R上是减函数,
∴f(x)在[-3,3]上也是减函数.
∴f(-3)最大,f(3)最小.f(3)=f(2)+f(1)=f(1)+f(1)+f(1)=3×(-=-2.
∴f(-3)=-f(3)=2.即f(x)在[-3,3]上最大值为2,最小值为-2.
§2.3 函数的奇偶性
基础自测
11.(2008·青岛调研)已知f(x)=(x≠a).
(1)若a=-2,试证f(x)在(-∞,-2)内单调递增;
(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.
(1)证明 任设x1<x2<-2,则f(x1)-f(x2)=
∵(x1+2)(x2+2)>0,x1-x2<0,∴f(x1)<f(x2),∴f(x)在(-∞,-2)内单调递增.
(2)解 任设1<x1<x2,则f(x1)-f(x2)=
∵a>0,x2-x1>0,∴要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0恒成立,
∴a≤1.综上所述知0<a≤1.
10.函数f(x)对任意的实数m、n有f(m+n)=f(m)+f(n),且当x>0时有f(x)>0.
(1)求证:f(x)在(-∞,+∞)上为增函数;
(2)若f(1)=1,解不等式f[log2(x2-x-2)]<2.
(1)证明 设x2>x1,则x2-x1>0.
∵f(x2)-f(x1)=f(x2-x1+x1)-f(x1)=f(x2-x1)+f(x1)-f(x1)=f(x2-x1)>0,
∴f(x2)>f(x1),f(x)在(-∞,+∞)上为增函数.
(2)解 ∵f(1)=1,∴2=1+1=f(1)+f(1)=f(2).
又f[log2(x2-x-2)]<2,∴f[log2(x2-x-2)]<f(2).
∴log2(x2-x-2)<2,于是∴
即-2<x<-1或2<x<3.∴原不等式的解集为{x|-2<x<-1或2<x<3}.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com