题目列表(包括答案和解析)

 0  446801  446809  446815  446819  446825  446827  446831  446837  446839  446845  446851  446855  446857  446861  446867  446869  446875  446879  446881  446885  446887  446891  446893  446895  446896  446897  446899  446900  446901  446903  446905  446909  446911  446915  446917  446921  446927  446929  446935  446939  446941  446945  446951  446957  446959  446965  446969  446971  446977  446981  446987  446995  447348 

⒀、已知函数,若为奇函数,则________。

⒁、已知正四棱锥的体积为12,底面对角线的长为,则侧面与底面所成的二面角等于_______________。

⒂、设,式中变量满足下列条件

则z的最大值为_____________。

⒃、安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有__________种。(用数字作答)

试题详情

⑴、已知向量满足,且,则的夹角为

A.        B.      C.      D.

⑵、设集合,则

A.             B.

C.             D.

⑶、已知函数的图象与函数的图象关于直线对称,则

A.          B.

C.          D.

⑷、双曲线的虚轴长是实轴长的2倍,则

A.        B.       C.      D.

⑸、设是等差数列的前项和,若,则

A.        B.        C.       D.

⑹、函数的单调增区间为

A.       B.

C.       D.

⑺、从圆外一点向这个圆作两条切线,则两切线夹角的余弦值为

A.        B.      C.       D.

⑻、的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且,则

A.         B.      C.       D.

⑼、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是

A.       B.     C.       D.

抛物线上的点到直线距离的最小值是

A.        B.      C.        D.

⑽、在的展开式中,的系数为

A.       B.      C.        D.

⑾、抛物线上的点到直线距离的最小值是

A.        B.      C.         D.

⑿、用长度分别为2、3、4、5、6(单位:)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为

A.    B.      C.      D.

普通高等学校招生全国统一考试

理科数学

第Ⅱ卷

试题详情

22.解: (Ⅰ)由 Sn=an-×2n+1+, n=1,2,3,… , ①  得 a1=S1= a1-×4+ 所以a1=2.

再由①有 Sn1=an1-×2n+, n=2,3,4,…

将①和②相减得: an=Sn-Sn1= (an-an1)-×(2n+1-2n),n=2,3, …

整理得: an+2n=4(an1+2n1),n=2,3, … , 因而数列{ an+2n}是首项为a1+2=4,公比为4的等比数列,即 : an+2n=4×4n1= 4n, n=1,2,3, …, 因而an=4n-2n, n=1,2,3, …,

(Ⅱ)将an=4n-2n代入①得 Sn= ×(4n-2n)-×2n+1 + = ×(2n+1-1)(2n+1-2)

  = ×(2n+1-1)(2n-1)  

 Tn= = × = ×( - )

所以, = - )  = ×( - ) <

试题详情

由= +得M的坐标为(x,y), 由x0,y0满足C的方程,得点M的轨迹方程为:

+ =1 (x>1,y>2) 

(Ⅱ)| |2= x2+y2,  y2= =4+ ,

∴| |2= x2-1++5≥4+5=9.且当x2-1= ,即x=>1时,上式取等号.

故||的最小值为3.

21.解(Ⅰ)f(x)的定义域为(-∞,1)∪(1,+∞).对f(x)求导数得 f '(x)= e-ax.  

(ⅰ)当a=2时, f '(x)= e-2x, f '(x)在(-∞,0), (0,1)和(1,+ ∞)均大于0, 所以f(x)在(-∞,1), (1,+∞).为增函数.

(ⅱ)当0<a<2时, f '(x)>0, f(x)在(-∞,1), (1,+∞)为增函数.

(ⅲ)当a>2时, 0<<1, 令f '(x)=0 ,解得x1= - , x2= .

当x变化时, f '(x)和f(x)的变化情况如下表:

x
(-∞, -)
(-,)
(,1)
(1,+∞)
f '(x)
+

+
+
f(x)




f(x)在(-∞, -), (,1), (1,+∞)为增函数, f(x)在(-,)为减函数.

(Ⅱ)(ⅰ)当0<a≤2时, 由(Ⅰ)知: 对任意x∈(0,1)恒有f(x)>f(0)=1.

(ⅱ)当a>2时, 取x0= ∈(0,1),则由(Ⅰ)知 f(x0)<f(0)=1

(ⅲ)当a≤0时, 对任意x∈(0,1),恒有 >1且eax≥1,得

f(x)= eax≥ >1. 综上当且仅当a∈(-∞,2]时,对任意x∈(0,1)恒有f(x)>1.

试题详情

20.解: 椭圆方程可写为: + =1  式中a>b>0 , 且  得a2=4,b2=1,所以曲线C的方程为:  x2+ =1 (x>0,y>0). y=2(0<x<1) y '=-

设P(x0,y0),因P在C上,有0<x0<1, y0=2, y '|x=x0= - ,得切线AB的方程为:

试题详情

19.解法一: (Ⅰ)由已知l2⊥MN, l2l1 , MN∩l1 =M, 可得l2⊥平面ABN.由已知MN⊥l1 , AM=MB=MN,可知AN=NB且AN⊥NB. 又AN为AC在平面ABN内的射影.

∴AC⊥NB

(Ⅱ)∵Rt△CAN≌Rt△CNB, ∴AC=BC,又已知∠ACB=60°,因此△ABC为正三角形.

∵Rt△ANB≌Rt△CNB, ∴NC=NA=NB,因此N在平面ABC内的射影H是正三角形ABC的中心,连结BH,∠NBH为NB与平面ABC所成的角.

在Rt△NHB中,cos∠NBH= = = .

解法二: 如图,建立空间直角坐标系M-xyz.令MN=1, 则有A(-1,0,0),B(1,0,0),N(0,1,0),

(Ⅰ)∵MN是 l1l2的公垂线, l1l2, ∴l2⊥平面ABN. l2平行于z轴. 故可设C(0,1,m).于是 =(1,1,m), =(1,-1,0). ∴·=1+(-1)+0=0  ∴AC⊥NB.

(Ⅱ)∵ =(1,1,m), =(-1,1,m), ∴||=||, 又已知∠ACB=60°,∴△ABC为正三角形,AC=BC=AB=2. 在Rt△CNB中,NB=, 可得NC=,故C(0,1, ).

连结MC,作NH⊥MC于H,设H(0,λ, λ) (λ>0). ∴=(0,1-λ,-λ),

=(0,1, ). · = 1-λ-2λ=0, ∴λ= ,

∴H(0, , ), 可得=(0,, - ), 连结BH,则=(-1,, ),

∵·=0+ - =0, ∴⊥, 又MC∩BH=H,∴HN⊥平面ABC,

∠NBH为NB与平面ABC所成的角.又=(-1,1,0),

∴cos∠NBH= =  =

试题详情

18.解: (1)设Ai表示事件“一个试验组中,服用A有效的小鼠有i只" , i=0,1,2,

Bi表示事件“一个试验组中,服用B有效的小鼠有i只" , i=0,1,2,

依题意有: P(A1)=2×× = , P(A2)= × = . P(B0)= × = ,

P(B1)=2× × = , 所求概率为: P=P(B0·A1)+P(B0·A2)+P(B1·A2)

= × + × + × =

(Ⅱ)ξ的可能值为0,1,2,3且ξ~B(3,) . P(ξ=0)=()3= , P(ξ=1)=C31××()2=

, P(ξ=2)=C32×()2× =   , P(ξ=3)=( )3=

ξ
0
1
2
3
P




ξ的分布列为:

数学期望: Eξ=3× = .

试题详情

17.解: 由A+B+C=π, 得 = - , 所以有cos =sin .

cosA+2cos =cosA+2sin =1-2sin2 + 2sin

=-2(sin - )2+

当sin = , 即A=时, cosA+2cos取得最大值为

试题详情

⒄、(本小题满分12分)

的三个内角为,求当A为何值时,取得最大值,并求出这个最大值。

⒅、(本小题满分12分)

A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验。每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效。若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组。设每只小白鼠服用A有效的概率为,服用B有效的概率为

(Ⅰ)求一个试验组为甲类组的概率;

(Ⅱ)观察3个试验组,用表示这3个试验组中甲类组的个数,求的分布列和数学期望。

⒆、(本小题满分12分)

如图,是互相垂直的异面直线,MN是它们的公垂线段。点A、B在上,C在上,

(Ⅰ)证明

(Ⅱ)若,求与平面ABC所成角的余弦值。

⒇、(本小题满分12分)

在平面直角坐标系中,有一个以为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与轴的交点分别为A、B,且向量。求:

(Ⅰ)点M的轨迹方程;

(Ⅱ)的最小值。

(21)、(本小题满分14分)

已知函数

(Ⅰ)设,讨论的单调性;

(Ⅱ)若对任意恒有,求的取值范围。

(22)、(本小题满分12分)

设数列的前项的和

(Ⅰ)求首项与通项

(Ⅱ)设,证明:

试题详情

⒀、已知正四棱锥的体积为12,底面对角线的长为,则侧面与底面所成的二面角等于_______________。

⒁、设,式中变量满足下列条件

则z的最大值为_____________。

⒂、安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有__________种。(用数字作答)

⒃、设函数。若是奇函数,则__________。

试题详情


同步练习册答案