0  433110  433118  433124  433128  433134  433136  433140  433146  433148  433154  433160  433164  433166  433170  433176  433178  433184  433188  433190  433194  433196  433200  433202  433204  433205  433206  433208  433209  433210  433212  433214  433218  433220  433224  433226  433230  433236  433238  433244  433248  433250  433254  433260  433266  433268  433274  433278  433280  433286  433290  433296  433304  447090 

8. 解: 

(1)① ……………………………………………………………………………2分

,S梯形OABC=12 ……………………………………………2分

②当时,

直角梯形OABC被直线扫过的面积=直角梯形OABC面积-直角三角开DOE面积

    …………………………………………4分

(2) 存在 ……………………………………………………………………………………1分

 …(每个点对各得1分)……5分

    对于第(2)题我们提供如下详细解答(评分无此要求).下面提供参考解法二:

①    以点D为直角顶点,作

.(图示阴影)

,在上面二图中分别可得到点的生标为P(-12,4)、P(-4,4)

E点在0点与A点之间不可能;

② 以点E为直角顶点

同理在②二图中分别可得点的生标为P(-,4)、P(8,4)E点在0点下方不可能.

以点P为直角顶点

同理在③二图中分别可得点的生标为P(-4,4)(与①情形二重合舍去)、P(4,4),

E点在A点下方不可能.

综上可得点的生标共5个解,分别为P(-12,4)、P(-4,4)、P(-,4)、

P(8,4)、P(4,4).

下面提供参考解法二:

以直角进行分类进行讨论(分三类):

第一类如上解法⑴中所示图

,直线的中垂线方程:,令.由已知可得化简得解得  

第二类如上解法②中所示图

,直线的方程:,令.由已知可得化简得解之得 ,

第三类如上解法③中所示图

,直线的方程:,令.由已知可得解得

(重合舍去).

综上可得点的生标共5个解,分别为P(-12,4)、P(-4,4)、P(-,4)、

P(8,4)、P(4,4).

事实上,我们可以得到更一般的结论:

如果得出,则P点的情形如下

直角分类情形















试题详情

7. 解:

(1)① ………………………………………………………………2分

仍然成立 ……………………………………………………1分

在图(2)中证明如下

∵四边形、四边形都是正方形

…………………………………………………………………1分    

       ∴ (SAS)………………………………………………………1分

 

又∵ 

   ∴

…………………………………………………………………………1分

(2)成立,不成立 …………………………………………………2分

简要说明如下

∵四边形、四边形都是矩形,

()

     

     ∴………………………………………………………………………1分

又∵ 

  ∴

  ……………………………………………………………………………1分

(3)∵   ∴

    又∵

    ∴  ………………………………………………1分

    ∴  ………………………………………………………………………1分

试题详情

6. 解:(1)作BE⊥OA,∴ΔAOB是等边三角形∴BE=OB·sin60o=,∴B(,2)

∵A(0,4),设AB的解析式为,所以,解得,

以直线AB的解析式为

(2)由旋转知,AP=AD, ∠PAD=60o,

∴ΔAPD是等边三角形,PD=PA=

如图,作BE⊥AO,DH⊥OA,GB⊥DH,显然ΔGBD中∠GBD=30°

∴GD=BD=,DH=GH+GD=+=,

∴GB=BD=,OH=OE+HE=OE+BG=

∴D(,)

(3)设OP=x,则由(2)可得D()若ΔOPD的面积为:

解得:所以P(,0)

试题详情

5. 解:(1)(-4,-2);(-m,-)

(2) ①由于双曲线是关于原点成中心对称的,所以OP=OQ,OA=OB,所以四边形APBQ一定是平行四边形

②可能是矩形,mn=k即可

不可能是正方形,因为Op不能与OA垂直.

解:(1)作BE⊥OA,

∴ΔAOB是等边三角形

∴BE=OB·sin60o=

∴B(,2)

∵A(0,4),设AB的解析式为,所以,解得,的以直线AB的解析式为

(2)由旋转知,AP=AD, ∠PAD=60o,

∴ΔAPD是等边三角形,PD=PA=

试题详情

4. 解:(1)∵MNBC,∴∠AMN=∠B,∠ANM=∠C

 ∴ △AMN ∽ △ABC

,即

ANx.  ……………2分

=.(0<<4)  ……………3分

(2)如图2,设直线BC与⊙O相切于点D,连结AOOD,则AO =OD =MN

在Rt△ABC中,BC =5.

   由(1)知 △AMN ∽ △ABC

,即. 

.  …………………5分

M点作MQBCQ,则. 

在Rt△BMQ与Rt△BCA中,∠B是公共角,

∴ △BMQ∽△BCA

x. 

∴ 当x时,⊙O与直线BC相切.…………………………………7分

(3)随点M的运动,当P点落在直线BC上时,连结AP,则O点为AP的中点.

MNBC,∴ ∠AMN=∠B,∠AOM=∠APC

∴ △AMO ∽ △ABP. 

AMMB=2. 

故以下分两种情况讨论:

① 当0<≤2时,.  

∴ 当=2时,  ……………………………………8分

② 当2<<4时,设PMPN分别交BCEF

∵ 四边形AMPN是矩形,  

PNAMPNAMx

又∵ MNBC

∴ 四边形MBFN是平行四边形.

FNBM=4-x. 

又△PEF ∽ △ACB. 

. ……………………………………………… 9分

.……………………10分

当2<<4时,.  

∴ 当时,满足2<<4,.   ……………………11分

综上所述,当时,值最大,最大值是2. …………………………12分

试题详情

3. 解:(1)

中点,

(2)

关于的函数关系式为:

(3)存在,分三种情况:

①当时,过点,则

②当时,

③当时,则中垂线上的点,

于是点的中点,

综上所述,当或6或时,为等腰三角形.

试题详情

2. (1) ∵A,B两点的坐标分别是A(10,0)和B(8,),

    ∴

    ∴

    当点A´在线段AB上时,∵,TA=TA´,

    ∴△A´TA是等边三角形,且

    ∴


 
y
 
E
 
    ∴

x
 
O
 
C
 
T
 
P
 
B
 
A
 
    当A´与B重合时,AT=AB=

    所以此时.

  (2)当点A´在线段AB的延长线,且点P在线段AB(不与B重合)上时,

   纸片重叠部分的图形是四边形(如图(1),其中E是TA´与CB的交点),


 
y
 
x
 
   当点P与B重合时,AT=2AB=8,点T的坐标是(2,0)

   又由(1)中求得当A´与B重合时,T的坐标是(6,0)

P
 
B
 
E
 
   所以当纸片重叠部分的图形是四边形时,.

F
 
C
 
  (3)S存在最大值

A
 
T
 
O
 
   1当时,

   在对称轴t=10的左边,S的值随着t的增大而减小,

∴当t=6时,S的值最大是.

2当时,由图1,重叠部分的面积

∵△A´EB的高是

  

当t=2时,S的值最大是

3当,即当点A´和点P都在线段AB的延长线是(如图2,其中E是TA´与CB的交点,F是TP与CB的交点),

,四边形ETAB是等腰形,∴EF=ET=AB=4,

综上所述,S的最大值是,此时t的值是.

试题详情

1.  解:( 1)由已知得:解得

c=3,b=2

∴抛物线的线的解析式为

(2)由顶点坐标公式得顶点坐标为(1,4)

所以对称轴为x=1,A,E关于x=1对称,所以E(3,0)

设对称轴与x轴的交点为F

所以四边形ABDE的面积=

=

=

=9

(3)相似

如图,BD=

BE=

DE=

所以, 即: ,所以是直角三角形

所以,且,

所以.

试题详情

29. (2008年江苏省无锡市)一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:

(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?

(2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求?

答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由.(下面给出了几个边长为30km的正方形城区示意图,供解题时选用)

图1
 
图2
 
图3
 
图4
 

压轴题答案

试题详情

28. (2008年江苏省南通市)已知双曲线与直线相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线上的动点.过点B作BD∥y轴于点D.过N(0,-n)作NC∥x轴交双曲线于点E,交BD于点C.

(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.

(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.

(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.

试题详情


同步练习册答案
閸忥拷 闂傦拷