题目列表(包括答案和解析)

 0  445213  445221  445227  445231  445237  445239  445243  445249  445251  445257  445263  445267  445269  445273  445279  445281  445287  445291  445293  445297  445299  445303  445305  445307  445308  445309  445311  445312  445313  445315  445317  445321  445323  445327  445329  445333  445339  445341  445347  445351  445353  445357  445363  445369  445371  445377  445381  445383  445389  445393  445399  445407  447348 

(三)巩固练习

1.已知圆的方程是x2+y2=1,求:

(1)斜率为1的切线方程;

2.(1)圆(x-1)2+(y+2)2=4上的点到直线2x-y+1=0的最短距离是

(2)两圆C1∶x2+y2-4x+2y+4=0与C2∶x2+y2+2x-6y-26=0的位置关系是______.(内切)

由学生口答.

3.未经过原点,且过圆x2+y2+8x-6y+21=0和直线x-y+5=0的两个交点的圆的方程.

分析:若要先求出直线和圆的交点,根据圆的一般方程,由三点可求得圆的方程;若没过交点的圆系方程,由此圆系过原点可确定参数λ,从而求得圆的方程.由两个同学演板给出两种解法:

解法一:

设所求圆的方程为x2+y2+Dx+Ey+F=0.

∵(0,0),(-2,3),(-4,1)三点在圆上,

解法二:

设过交点的圆系方程为:

x2+y2+8x-6y+21+λ(x-y+5)=0.

试题详情

(二)应用举例

和切点坐标.

分析:求已知圆的切线问题,基本思路一般有两个方面:(1)从代数特征分析;(2)从几何特征分析.一般来说,从几何特征分析计算量要小些.该例题由学生演板完成.

∵圆心O(0,0)到切线的距离为4,

把这两个切线方程写成

注意到过圆x2+y2=r2上的一点P(x0,y0)的切线的方程为x0x+y0y=r2,

例2  已知实数A、B、C满足A2+B2=2C2≠0,求证直线Ax+By+C=0与圆x2+y2=1交于不同的两点P、Q,并求弦PQ的长.

分析:证明直线与圆相交既可以用代数方法列方程组、消元、证明△>0,又可以用几何方法证明圆心到直线的距离小于圆半径,由教师完成.

证:设圆心O(0,0)到直线Ax+By+C=0的距离为d,则d=

∴直线Ax+By+C=0与圆x2+y1=1相交于两个不同点P、Q.

例3  求以圆C1∶x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦为直径的圆的方程.

解法一:

相减得公共弦所在直线方程为4x+3y-2=0.

∵所求圆以AB为直径,

于是圆的方程为(x-2)2+(y+2)2=25.

解法二:

设所求圆的方程为:

x2+y2-12x-2y-13+λ(x2+y2+12x+16y-25)=0(λ为参数)

∵圆心C应在公共弦AB所在直线上,

∴ 所求圆的方程为x2+y2-4x+4y-17=0.

小结:

解法一体现了求圆的相交弦所在直线方程的方法;解法二采取了圆系方程求待定系数,解法比较简练.

试题详情

(一)知识准备

我们今天研究的课题是“点与圆、直线与圆以及圆与圆的位置关系”,为了更好地讲解这个课题,我们先复习归纳一下点与圆、直线与圆以及圆与圆的位置关系中的一些知识.

1.点与圆的位置关系

设圆C∶(x-a)2+(y-b)2=r2,点M(x0,y0)到圆心的距离为d,则有:

(1)d>r 点M在圆外;

(2)d=r 点M在圆上;

(3)d<r 点M在圆内.

2.直线与圆的位置关系

设圆 C∶(x-a)2+(y-b)=r2,直线l的方程为Ax+By+C=0,圆心(a,

判别式为△,则有:

(1)d<r 直线与圆相交;

(2)d=r 直线与圆相切;

(3)d<r 直线与圆相离,即几何特征;

或(1)△>0 直线与圆相交;

(2)△=0 直线与圆相切;

(3)△<0 直线与圆相离,即代数特征,

3.圆与圆的位置关系

设圆C1:(x-a)2+(y-b)2=r2和圆C2:(x-m)2+(y-n)2=k2(k≥r),且设两圆圆心距为d,则有:

(1)d=k+r 两圆外切;

(2)d=k-r 两圆内切;

(3)d>k+r 两圆外离;

(4)d<k+r 两圆内含;

(5)k-r<d<k+r 两圆相交.

4.其他

(1)过圆上一点的切线方程:

①圆x2+y2=r2,圆上一点为(x0,y0),则此点的切线方程为x0x+y0y=r2(课本命题).

②圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2(课本命题的推广).

(2)相交两圆的公共弦所在直线方程:

设圆C1∶x2+y2+D1x+E1y+F1=0和圆C2∶x2+y2+D2x+E2y+F2=0,若两圆相交,则过两圆交点的直线方程为(D1-D2)x+(E1-E2)y+(F1-F2)=0.

(3)圆系方程:

①设圆C1∶x2+y2+D1x+E1y+F1=0和圆C2∶x2+y2+D2x+E2y+F2=0.若两圆相交,则过交点的圆系方程为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ为参数,圆系中不包括圆C2,λ=-1为两圆的公共弦所在直线方程).

②设圆C∶x2+y2+Dx+Ey+F=0与直线l:Ax+By+C=0,若直线与圆相交,则过交点的圆系方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ为参数).

试题详情

归纳讲授、学生演板、重点讲解、巩固练习.

试题详情

2.难点:圆(x-a)2+(y-b)2=r2上一点(x0,y0)的切线方程的证明.

(解决办法:仿照课本上圆x2+y2=r2上一点(x0,y0)切线方程的证明.)

试题详情

1.重点:(1)直线和圆的相切(圆的切线方程)、相交(弦长问题);(2)圆系方程应用.

(解决办法:(1)使学生掌握相切的几何特征和代数特征,过圆上一点的圆的代线方程,弦长计算问题;(2)给学生介绍圆与圆相交的圆系方程以及直线与圆相交的圆系方程.)

试题详情

(三)学科渗透点

点与圆、直线与圆以及圆与圆的位置关系在初中平面几何已进行了分析,现在是用代数方法来分析几何问题,是平面几何问题的深化.

试题详情

(二)能力训练点

通过点与圆、直线与圆以及圆与圆位置关系的教学,培养学生综合运用圆有关方面知识的能力.

试题详情

(一)知识教学点

使学生掌握点与圆、直线与圆以及圆与圆的位置关系;过圆上一点的圆的切线方程,判断直线与圆相交、相切、相离的代数方法与几何方法;两圆位置关系的几何特征和代数特征.

试题详情

5.正方形中心在C(-1,0),一条边所在直线方程是3x-y二0,求其它三边所在的直线方程.

解:此题是例3交换条件与结论后的题:

x+3y-5=0,  x+3y+7=0,  3x-y+9=0.

试题详情


同步练习册答案