闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ゆ繝鈧柆宥呯劦妞ゆ帒鍊归崵鈧柣搴㈠嚬閸欏啫鐣峰畷鍥ь棜閻庯絻鍔嬪Ч妤呮⒑閸︻厼鍔嬮柛銊ョ秺瀹曟劙鎮欏顔藉瘜闂侀潧鐗嗗Λ妤冪箔閸屾粎纾奸柍褜鍓氱粭鐔煎焵椤掆偓閻e嘲饪伴崼顐f櫍闂佺粯鍨靛Λ娆戔偓闈涚焸濮婃椽妫冨☉姘暫濠碘槅鍋呴〃鍡涘箞閵婎煈妲剧紓浣介哺鐢繝骞冮埡鍛闁肩⒈鍏涚槐婵嬫⒒娴h櫣甯涘〒姘殜瀹曟娊鏁愰崱妯哄伎闂侀€炲苯澧撮柡灞炬礋瀹曠厧鈹戦崶鑸碉骏闂備礁鎲¤摫闁圭懓娲濠氬焺閸愩劎绐為柣蹇曞仦閸ㄦ繂鈻介鍛瘈闁靛繈鍨洪崵鈧┑鈽嗗亝缁诲倿鎮惧畡鎵虫斀闁糕檧鏅涢幃鎴︽⒑缁洖澧查柛鏃€甯為懞杈ㄧ節濮橆厸鎷洪梺鍛婄箓鐎氼剟鍩€椤掍焦鍊愰柟顔矫埞鎴犫偓锝呯仛閺呮粌顪冮妶鍡楀闁稿﹥顨堟竟鏇熺附缁嬭法楠囬梺鍓插亝缁嬫垶淇婇悾灞稿亾鐟欏嫭绀€闁活剙銈搁崺鈧い鎺戝枤濞兼劖绻涢崣澶呯細闁轰緡鍣i獮鎺懳旂€n剛鈼ゆ繝鐢靛█濞佳囶敄閹版澘鏋侀柛鏇ㄥ灡閻撱垺淇婇娆掝劅婵℃彃鍢查…璺ㄦ喆閸曨剛顦板┑顔硷攻濡炶棄鐣烽妸锔剧瘈闁告洦鍘剧粣妤呮⒒娴e懙鍦偓娑掓櫆缁绘稒绻濋崶褏鐣鹃柣蹇曞仩琚欓柡瀣叄閺岀喖骞嗚閸ょ喖鏌涘鈧禍璺侯潖濞差亜浼犻柛鏇ㄥ墮閸嬪秹姊洪崨濠冪叆闁活厼鍊块獮鍐潨閳ь剟骞冮埡鍛仺闁汇垻顣槐鏌ユ⒒娴h櫣甯涢柣鐔村灲瀹曟垿骞樼紒妯煎幈闂侀潧枪閸庢娊宕洪敐鍥e亾濞堝灝鏋涙い顓㈡敱娣囧﹪骞栨担鍝ュ幐闂佺ǹ鏈惌顔捐姳娴犲鈷掑ù锝呮嚈瑜版帒瀚夋い鎺戝€婚惌娆撴煙鏉堟儳鐦滈柡浣稿€块弻銊╂偆閸屾稑顏�濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌涘☉姗堟敾闁告瑥绻橀弻锝夊箣閿濆棭妫勯梺鍝勵儎缁舵岸寮诲☉妯锋婵鐗婇弫楣冩⒑閸涘﹦鎳冪紒缁橈耿瀵鏁愭径濠勵吅闂佹寧绻傚Λ顓炍涢崟顖涒拺闁告繂瀚烽崕搴g磼閼搁潧鍝虹€殿喖顭烽幃銏ゅ礂鐏忔牗瀚介梺璇查叄濞佳勭珶婵犲伣锝夘敊閸撗咃紲闂佽鍨庨崘锝嗗瘱缂傚倷绶¢崳顕€宕归幎钘夌闁靛繒濮Σ鍫ユ煏韫囨洖啸妞ゆ挻妞藉娲传閸曨偅娈滈梺绋款儐閹瑰洭寮诲☉銏犖ч柛娑卞瀺瑜旈弻锛勪沪閸撗勫垱婵犵绱曢崗姗€銆佸▎鎾村亗閹煎瓨蓱鐎氫粙姊婚崒娆愮グ婵℃ぜ鍔庣划鍫熸媴鐠囥儲妞介、姗€濮€閻樼儤鎲伴梻浣告惈濞村嫮妲愰弴銏″仾闁逞屽墴濮婃椽宕崟顒€绐涢梺绋库看閸嬪﹥淇婇悜鑺ユ櫆閺夌偞澹嗛惄搴ㄦ⒒娴g懓顕滄俊顐$窔椤㈡俺顦查柍璇茬Т椤撳吋寰勭€n剙骞嶆俊鐐€栧濠氭偤閺傚簱鏋旀繝濠傛噳閸嬫挾鎲撮崟顒傤槰濡炪們鍔屽Λ妤咁敋閵夆晛绀嬫い鎺戝€婚惁鍫熺箾鏉堝墽鍒板鐟帮工铻炴繝濠傜墛閳锋帡鏌涚仦鎹愬闁逞屽墴椤ユ挾鍒掗崼鐔虹懝闁逞屽墴閻涱喗寰勯幇顒備紜闁烩剝甯婇悞锕€顪冩禒瀣瀬闁告劦鍠栫壕鍏兼叏濡鏁剧紒鍗炲船閳规垿鎮╅鑲╀紘闂佺硶鏅滈悧鐘茬暦濠靛鍗抽柕蹇曞Т瀵兘姊洪棃娑辨Т闁哄懏绮撻幃锟犳偄閸忚偐鍘甸梻渚囧弿缁犳垿寮稿☉銏$厱闁哄倹顑欓崕鏃堟煛鐏炵晫效闁哄被鍔庨埀顒婄秵娴滅偞瀵煎畝鍕拺閻犲洠鈧櫕鐏堢紓鍌氱Т閿曨亪鎮伴鐣岀懝闁逞屽墴閻涱噣骞掑Δ鈧粻锝嗙節閸偄濮夐柍褜鍓濆▍鏇犳崲濠靛鍋ㄩ梻鍫熺◥缁爼姊洪悷鏉挎毐缂佺粯锚閻e嘲鈹戦崱蹇旂€婚梺瑙勫劤閻ゅ洭骞楅弴銏♀拺缂備焦蓱閳锋帡鏌涘Ο鐘叉噽閻棝鏌涢弴銊ョ仭闁绘挸绻橀弻娑㈩敃閿濆洨鐣哄銈冨劜缁秹濡甸崟顔剧杸闁靛绠戦锟�

题目列表(包括答案和解析)

 0  445885  445893  445899  445903  445909  445911  445915  445921  445923  445929  445935  445939  445941  445945  445951  445953  445959  445963  445965  445969  445971  445975  445977  445979  445980  445981  445983  445984  445985  445987  445989  445993  445995  445999  446001  446005  446011  446013  446019  446023  446025  446029  446035  446041  446043  446049  446053  446055  446061  446065  446071  446079  447348 

(三)两条直线平行与垂直的条件,两条直线所成的角,两条直线的交点,点到直线的距离

说明  这部分内容近年高考在填空、选择及解答题中都常考查到.

使用公式求l1到l2的角时,应注意k1、k2的顺序.过两直线交点的直线系方程中不 包括直线l2.

例3  光线由点(-1,4)射出,遇直线2x+3y-6=0被反射,已知反射光线过点(3 ,).求反射光线所在直线方程.

解:  设(-1,4)点关于已知直线对称点为(x′,y′).

则点(-1,4)与点(x′,y′)的连线段被已知直线垂直平分,故可得  解得,再由两点式可得所求直线方程为13x-26y+85=0.

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鏁愭径濠勵吅闂佹寧绻傞幉娑㈠箻缂佹ḿ鍘遍梺闈涚墕閹冲酣顢旈銏$厸閻忕偛澧藉ú瀛橆殽閻愯揪鑰块柟宕囧█椤㈡寰勭€f挻绮撳缁樻媴鐟欏嫬浠╅梺鍛婃煥缁夊爼骞戦姀銈呯妞ゆ柨妲堥敃鍌涚厱闁哄洢鍔岄悘鐘绘煕閹般劌浜惧┑锛勫亼閸婃牠宕濋敃鈧…鍧楀焵椤掑倻纾兼い鏃傚帶椤e磭绱掓潏銊﹀鞍闁瑰嘲鎳橀獮鎾诲箳瀹ュ拋妫滃┑鐘垫暩婵即宕归悡搴樻灃婵炴垯鍩勯弫鍕煕閺囥劌骞楃€规洘鐓¢弻娑㈠焺閸愵亖濮囬梺缁樻尭缁绘﹢寮诲☉銏╂晝闁挎繂娲ㄩ悾娲⒑闂堚晝绋绘俊鐐扮矙瀵鈽夐姀鈩冩珳闂佸憡渚楅崰娑氭兜閳ь剛绱撻崒娆愮グ濡炴潙鎽滈弫顕€鏁撻悩鑼暫闂佸啿鎼幊蹇浰夐崼鐔虹闁瑰鍋涚粭姘舵煟鎼存繂宓嗘慨濠勭帛閹峰懘宕ㄦ繝鍐ㄥ壍闂備焦妞块崜娆撳Χ缁嬭法鏆﹀ù鍏兼綑閸愨偓濡炪倖鎸炬慨瀵哥矈閿曞倹鈷戠痪顓炴噺瑜把呯磼閻樺啿鐏╃紒顔款嚙閳藉濮€閳锯偓閹峰姊洪崜鎻掍簽闁哥姵鎹囬崺濠囧即閻旂繝绨婚梺鍝勫€搁悘婵嬵敂椤撶喐鍙忓┑鐘插鐢盯鏌熷畡鐗堝殗鐎规洏鍔嶇换婵嬪磼濞戞瑧鏆┑鐘垫暩閸庢垹寰婇挊澹濇椽鏁冮埀顒勨€旈崘鈺冾浄閻庯綆鍋呭▍婊堟⒑缂佹ê濮堟繛鍏肩懅濞嗐垽鎮欓悜妯煎幍闂備緡鍙忕粻鎴﹀礉閿曞倹鐓ラ柡鍥╁仜閳ь剙缍婇幃锟犲即閵忥紕鍘搁梺鎼炲劘閸庤鲸淇婃總鍛婄厽闊洦娲栨牎婵烇絽娲ら敃顏堛€侀弴銏℃櫜闊洦鍩冮崑鎾诲锤濡や胶鍘搁柣蹇曞仜婢ц棄煤閹绢喗鐓冮柕澶樺灣閻e灚顨ラ悙宸剰闁宠鍨垮畷鍫曞煛閳ь剚绔熼弴鐘电=闁稿本鑹鹃埀顒勵棑缁牊绗熼埀顒勩€侀弽顓炲窛妞ゆ牗绋戞惔濠囨⒑閸︻厼顣兼繝銏★耿閹€愁潨閳ь剟寮婚悢鍛婄秶濡わ絽鍟宥夋⒑缁嬪尅鍔熼柛蹇旓耿瀵濡堕崶褎鐎抽梺鍛婎殘閸嬫盯锝為锔解拺闁告稑锕ラ悡銉╂煙鐠囇呯?闁瑰箍鍨归埥澶婎潩閿濆懍澹曞┑鐐村灦閻燂紕绱撳鑸电厽妞ゆ挻绮岄埀顒佹礋濠€浣糕攽閻樿宸ョ紒銊ㄥ亹閼鸿京绱掑Ο闀愮盎闂佸搫娴傛禍鐐电矙閼姐倗纾肩紓浣贯缚缁犳挻銇勯锝囩疄妞ゃ垺锕㈤幃銏ゅ礈闊厽鍩涢梻鍌氬€搁崐鐑芥嚄閸撲礁鍨濇い鏍ㄧ〒娴犳岸姊虹拠鑼缂佺粯鍨块幃鐑藉煛娴g儤娈鹃梺瑙勫婢ф宕愰悜鑺ョ厽闁瑰鍊戝璺虹婵炲樊浜濋悡鐔煎箹缁懓澧查悹鎰ㄢ偓鏂ユ斀妞ゆ梻鍋撻弳顒€鈹戦埄鍐╁唉鐎规洘锕㈤崺锟犲焵椤掑倹宕查柛鈩冪⊕閻撶喖鏌熼柇锕€骞楃紓宥嗗灦缁绘盯骞栭鐐寸亶濡炪們鍔婇崕鐢稿箖濞嗗浚鍟呮い鏃傚帶婢瑰淇婇悙顏勨偓褎淇婇崶銊︽珷婵°倕鎳庣粻姘舵煛閸愩劎澧涢柡鍛叀閺屾盯濡烽埡濠冾棖闁瑰吋娼欓敃顏勵潖婵犳艾纾兼繛鍡樺笒閸橈紕绱撴笟鍥ф珮闁搞劏娉涢悾宄扳攽鐎n偅娅囬梺绋挎湰濮樸劑藝椤撶偐鏀介柣鎰级椤ョ偤鏌熺粙鎸庢喐缂侇喖鐗婂鍕箛椤撶姴甯鹃梻浣稿閸嬪懐鎹㈤崘顔㈠骞樼搾浣烘嚀楗即宕熼鐘靛帒闂備線娼уú銈団偓姘嵆閻涱喖螣閸忕厧纾梺鐑╂櫆鐢洭宕规禒瀣摕婵炴垶顭傞悢鍏兼優閻熸瑥瀚崰鏍ㄤ繆閻愵亜鈧垿宕濇繝鍥х?闁汇垻枪缁犳牗绻涢崱妯诲碍缂佺姷鏁婚弻鐔兼倻濡闉嶅銈嗘煥鐎氭澘顫忓ú顏勭鐟滃繒鏁☉銏$厽婵°倕鍟埢鍫⑩偓娈垮枦椤曆囧煡婢跺á鐔兼煥鐎e灚缍岄梻鍌欑閹诧繝銆冮崼銉ョ;闁绘劗鍎ら崐鍫曟煕椤愩倕鏋旂紒鐘荤畺閹鎮介惂璇茬秺椤㈡挸鐣濋崟顒傚幈濠电偛妫楃换鎰板汲濞嗘劑浜滄い鎰╁灮缁犲鏌熼悡搴gШ鐎规洜鍏橀、姗€鎮崨顖氱哎婵犵數濮甸鏍窗濡ゅ懌鈧啴宕ㄩ鍥ㄧ☉閳诲酣骞橀弶鎴滄偅闂備礁澹婇崑鍛哄鈧崺娑㈠箣閻樼數锛濇繛杈剧悼濞呫垺绗熷☉娆戠闁割偆鍠愰ˉ鍫ユ煛鐏炶濮傜€殿喗鎸虫俊鎼佸Χ婢跺﹣绮i梻鍌欒兌缁垱绗熷Δ鍛獥婵炴垶姘ㄦ稉宥嗙箾閹寸們姘i崼鐔虹闁糕剝锚閻忋儱鈹戦鑺ュ€愰柡宀嬬稻閹棃鏁嶉崟顓熸闂備胶枪妤犵ǹ鐣烽鍐罕闁诲骸鍘滈崑鎾绘煕閺囥劌浜炴い鏂挎閳规垿鎮欓崣澶嗘灆婵炲瓨绮嶇换鍫ュ春濞戙垹绠i柨鏃傛櫕閸樺崬鈹戦悙鏉戠仸闁挎洦鍋婂畷婵嬫偄閾忓湱锛滈梺缁樓瑰▍鏇炵暦瀹€鍕厵妞ゆ梻鐡斿▓鏃€銇勯锝囩疄闁诡喒鍓濋幆鏃堟晬閸曨厽缍侀梻鍌氬€峰ù鍥ь浖閵娧呯焼濞达綀娅i惌鎾绘煟閻旂厧浜伴柛銈嗘礃閵囧嫰寮村Δ鈧禍楣冩倵鐟欏嫭绀冮悽顖涘浮閵堫亝瀵奸弶鎴炪仢闂佸憡鍔︽禍婊呰姳閵夆晜鈷掗柛灞捐壘閳ь剟顥撶划鍫熺瑹閳ь剟鐛弽顓ф晝闁靛牆妫楁禒蹇擃渻閵堝棗濮х紒鐘冲灩婢规洟宕稿Δ浣哄幍闂佽鍨卞妯款暱闂備胶枪椤戝倿寮插⿰鍛床婵炴垶锕╅崯鍛亜閺冨洤鍚归柛鎴濈秺濮婅櫣绱掑Ο璇查瀺缂備礁顑嗛崹鍨耿娓氣偓濮婃椽骞愭惔锝囩暤闂佺懓鍟跨换姗€鐛径鎰濞达絽鎲¢悗顒勬⒑閸撴彃浜濋柟顖氾躬瀵噣宕奸悢铚傛睏闂傚倸鍊搁悧濠勭矙閹邦喖鍨濋悹楦裤€€閺€浠嬫煟閹邦剙绾ч柍缁樻礋閺屾稑鈻庤箛鎾存婵犵鈧磭鎽犵紒妤冨枛閸┾偓妞ゆ巻鍋撴い鏇稻缁傛帞鈧絽鐏氶弲锝夋⒑缂佹ê濮嶆繛浣冲洨宓侀柟鎵閳锋帒霉閿濆懏鍟為柛鐔哄仱閺屾盯寮埀顒勫垂閸喚鏆︽繝闈涙-閸氬顭跨捄渚剰闁逞屽墮閻栧ジ寮诲☉銏╂晝闁绘ɑ褰冩慨鏇㈡⒑缁嬪尅鍔熼柡浣割煼楠炲啫鐣¢幍铏€婚棅顐㈡处閹尖晜绂掗崜褏纾藉ù锝嗗絻娴滈箖姊洪崨濠傚闁哄倸鍊圭粋宥呪堪閸喓鍘繝鐢靛仜閻忔繈宕濋悽鍛婎棅妞ゆ帒顦晶顖涖亜閵婏絽鍔﹂柟顔界懅閹风姾顦堕柛姘煎亰閹鈻撻崹顔界亞缂備緡鍠楅悷鈺呭Υ娴e壊娼ㄩ柍褜鍓熼獮鍐ㄢ枎閹炬惌妫冨┑鐐村灦宀e潡顢欓崶顒佲拻闁稿本鑹鹃埀顒勵棑缁牊绗熼埀顒勭嵁婢舵劖鏅搁柣妯垮皺椤︻噣姊虹涵鍛涧缂佺姵鍨圭划鍫熷緞閹邦剛顔愬┑鐑囩秵閸撴瑦淇婇懖鈺冩/闁诡垎鍛ㄩ梺鍝勮閸旀垿骞冮妶澶婄<婵炴垶锕╂导锟�

试题详情

(二)直线方程,直线的斜率,直线的点斜式、斜截式、两点式、截距式方程,直线方程的一 般形式

例2  直线xcosα-y+1=0的倾斜角的变化范围是            .

解  直线方程化为斜截式y=cosα·x+1,故k=cosα,

又-1≤k≤1,故倾角所取范围是[0,]和[,π]。

试题详情

(一)有向线段、两点间距离、线段的定比分点

例1  在△ABC中,A(4,1),B(7,5),C(-4,7),求∠BAC平分线的长.

解:  由两点距离公式求得│AB│=5,│AC│=10,设角平分线交BC于D(x,y),由角平分线性质得λ=,从而求得D(),故可得│AD│=.

试题详情

5.直线关于点的对称

直线关于点的对称直线一定是一条与已知直线平行的直线,由中点坐标公式可得

直线Ax+By+C=0关于点P(x0,y0)的对称直线方程是

A(2x0-x)+B(2y0-y)+C=0

即              Ax+By-(2Ax0+2By0+C)=0.

“直线关于直线”对称

(1)几种特殊位置的对称

已知曲线f(x,y)=0,则它:

①关于x轴对称的曲线是f(x,-y)=0;

②关于y轴对称的曲线是f(-x,y)=0;

③关于原点对称的曲线是f(-x,-y)=0;

④关于直线y=x对称的曲线f(y,x)=0;

⑤关于直线线y=-x对称的曲线

f(-y,-x)=0;

⑥关于直线x=a对称的曲线是

f(2a-x,y)=0;

⑦关于直线y=b对称的曲线是

f(x,2b-y)=0

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鏁愭径濠勵吅闂佹寧绻傞幉娑㈠箻缂佹ḿ鍘遍梺闈涚墕閹冲酣顢旈銏$厸閻忕偛澧藉ú瀛橆殽閻愯揪鑰块柟宕囧█椤㈡寰勭€f挻绮撳缁樻媴鐟欏嫬浠╅梺鍛婃煥缁夊爼骞戦姀銈呯妞ゆ柨妲堥敃鍌涚厱闁哄洢鍔岄悘鐘绘煕閹般劌浜惧┑锛勫亼閸婃牠宕濋敃鈧…鍧楀焵椤掑倻纾兼い鏃傚帶椤e磭绱掓潏銊﹀鞍闁瑰嘲鎳橀獮鎾诲箳瀹ュ拋妫滃┑鐘垫暩婵即宕归悡搴樻灃婵炴垯鍩勯弫鍕煕閺囥劌骞楃€规洘鐓¢弻娑㈠焺閸愵亖濮囬梺缁樻尭缁绘﹢寮诲☉銏╂晝闁挎繂娲ㄩ悾娲⒑闂堚晝绋绘俊鐐扮矙瀵鈽夐姀鈩冩珳闂佸憡渚楅崰娑氭兜閳ь剛绱撻崒娆愮グ濡炴潙鎽滈弫顕€鏁撻悩鑼暫闂佸啿鎼幊蹇浰夐崼鐔虹闁瑰鍋涚粭姘舵煟鎼存繂宓嗘慨濠勭帛閹峰懘宕ㄦ繝鍐ㄥ壍闂備焦妞块崜娆撳Χ缁嬭法鏆﹀ù鍏兼綑閸愨偓濡炪倖鎸炬慨瀵哥矈閿曞倹鈷戠痪顓炴噺瑜把呯磼閻樺啿鐏╃紒顔款嚙閳藉濮€閳锯偓閹峰姊洪崜鎻掍簽闁哥姵鎹囬崺濠囧即閻旂繝绨婚梺鍝勫€搁悘婵嬵敂椤撶喐鍙忓┑鐘插鐢盯鏌熷畡鐗堝殗鐎规洏鍔嶇换婵嬪磼濞戞瑧鏆┑鐘垫暩閸庢垹寰婇挊澹濇椽鏁冮埀顒勨€旈崘鈺冾浄閻庯綆鍋呭▍婊堟⒑缂佹ê濮堟繛鍏肩懅濞嗐垽鎮欓悜妯煎幍闂備緡鍙忕粻鎴﹀礉閿曞倹鐓ラ柡鍥╁仜閳ь剙缍婇幃锟犲即閵忥紕鍘搁梺鎼炲劘閸庤鲸淇婃總鍛婄厽闊洦娲栨牎婵烇絽娲ら敃顏堛€侀弴銏℃櫜闊洦鍩冮崑鎾诲锤濡や胶鍘搁柣蹇曞仜婢ц棄煤閹绢喗鐓冮柕澶樺灣閻e灚顨ラ悙宸剰闁宠鍨垮畷鍫曞煛閳ь剚绔熼弴鐘电=闁稿本鑹鹃埀顒勵棑缁牊绗熼埀顒勩€侀弽顓炲窛妞ゆ牗绋戞惔濠囨⒑閸︻厼顣兼繝銏★耿閹€愁潨閳ь剟寮婚悢鍛婄秶濡わ絽鍟宥夋⒑缁嬪尅鍔熼柛蹇旓耿瀵濡堕崶褎鐎抽梺鍛婎殘閸嬫盯锝為锔解拺闁告稑锕ラ悡銉╂煙鐠囇呯?闁瑰箍鍨归埥澶婎潩閿濆懍澹曞┑鐐村灦閻燂紕绱撳鑸电厽妞ゆ挻绮岄埀顒佹礋濠€浣糕攽閻樿宸ョ紒銊ㄥ亹閼鸿京绱掑Ο闀愮盎闂佸搫娴傛禍鐐电矙閼姐倗纾肩紓浣贯缚缁犳挻銇勯锝囩疄妞ゃ垺锕㈤幃銏ゅ礈闊厽鍩涢梻鍌氬€搁崐鐑芥嚄閸撲礁鍨濇い鏍ㄧ〒娴犳岸姊虹拠鑼缂佺粯鍨块幃鐑藉煛娴g儤娈鹃梺瑙勫婢ф宕愰悜鑺ョ厽闁瑰鍊戝璺虹婵炲樊浜濋悡鐔煎箹缁懓澧查悹鎰ㄢ偓鏂ユ斀妞ゆ梻鍋撻弳顒€鈹戦埄鍐╁唉鐎规洘锕㈤崺锟犲焵椤掑倹宕查柛鈩冪⊕閻撶喖鏌熼柇锕€骞楃紓宥嗗灦缁绘盯骞栭鐐寸亶濡炪們鍔婇崕鐢稿箖濞嗗浚鍟呮い鏃傚帶婢瑰淇婇悙顏勨偓褎淇婇崶銊︽珷婵°倕鎳庣粻姘舵煛閸愩劎澧涢柡鍛叀閺屾盯濡烽埡濠冾棖闁瑰吋娼欓敃顏勵潖婵犳艾纾兼繛鍡樺笒閸橈紕绱撴笟鍥ф珮闁搞劏娉涢悾宄扳攽鐎n偅娅囬梺绋挎湰濮樸劑藝椤撶偐鏀介柣鎰级椤ョ偤鏌熺粙鎸庢喐缂侇喖鐗婂鍕箛椤撶姴甯鹃梻浣稿閸嬪懐鎹㈤崘顔㈠骞樼搾浣烘嚀楗即宕熼鐘靛帒闂備線娼уú銈団偓姘嵆閻涱喖螣閸忕厧纾梺鐑╂櫆鐢洭宕规禒瀣摕婵炴垶顭傞悢鍏兼優閻熸瑥瀚崰鏍ㄤ繆閻愵亜鈧垿宕濇繝鍥х?闁汇垻枪缁犳牗绻涢崱妯诲碍缂佺姷鏁婚弻鐔兼倻濡闉嶅銈嗘煥鐎氭澘顫忓ú顏勭鐟滃繒鏁☉銏$厽婵°倕鍟埢鍫⑩偓娈垮枦椤曆囧煡婢跺á鐔兼煥鐎e灚缍岄梻鍌欑閹诧繝銆冮崼銉ョ;闁绘劗鍎ら崐鍫曟煕椤愩倕鏋旂紒鐘荤畺閹鎮介惂璇茬秺椤㈡挸鐣濋崟顒傚幈濠电偛妫楃换鎰板汲濞嗘劑浜滄い鎰╁灮缁犲鏌熼悡搴gШ鐎规洜鍏橀、姗€鎮崨顖氱哎婵犵數濮甸鏍窗濡ゅ懌鈧啴宕ㄩ鍥ㄧ☉閳诲酣骞橀弶鎴滄偅闂備礁澹婇崑鍛哄鈧崺娑㈠箣閻樼數锛濇繛杈剧悼濞呫垺绗熷☉娆戠闁割偆鍠愰ˉ鍫ユ煛鐏炶濮傜€殿喗鎸虫俊鎼佸Χ婢跺﹣绮i梻鍌欒兌缁垱绗熷Δ鍛獥婵炴垶姘ㄦ稉宥嗙箾閹寸們姘i崼鐔虹闁糕剝锚閻忋儱鈹戦鑺ュ€愰柡宀嬬稻閹棃鏁嶉崟顓熸闂備胶枪妤犵ǹ鐣烽鍐罕闁诲骸鍘滈崑鎾绘煕閺囥劌浜炴い鏂挎閳规垿鎮欓崣澶嗘灆婵炲瓨绮嶇换鍫ュ春濞戙垹绠i柨鏃傛櫕閸樺崬鈹戦悙鏉戠仸闁挎洦鍋婂畷婵嬫偄閾忓湱锛滈梺缁樓瑰▍鏇炵暦瀹€鍕厵妞ゆ梻鐡斿▓鏃€銇勯锝囩疄闁诡喒鍓濋幆鏃堟晬閸曨厽缍侀梻鍌氬€峰ù鍥ь浖閵娧呯焼濞达綀娅i惌鎾绘煟閻旂厧浜伴柛銈嗘礃閵囧嫰寮村Δ鈧禍楣冩倵鐟欏嫭绀冮悽顖涘浮閵堫亝瀵奸弶鎴炪仢闂佸憡鍔︽禍婊呰姳閵夆晜鈷掗柛灞捐壘閳ь剟顥撶划鍫熺瑹閳ь剟鐛弽顓ф晝闁靛牆妫楁禒蹇擃渻閵堝棗濮х紒鐘冲灩婢规洟宕稿Δ浣哄幍闂佽鍨卞妯款暱闂備胶枪椤戝倿寮插⿰鍛床婵炴垶锕╅崯鍛亜閺冨洤鍚归柛鎴濈秺濮婅櫣绱掑Ο璇查瀺缂備礁顑嗛崹鍨耿娓氣偓濮婃椽骞愭惔锝囩暤闂佺懓鍟跨换姗€鐛径鎰濞达絽鎲¢悗顒勬⒑閸撴彃浜濋柟顖氾躬瀵噣宕奸悢铚傛睏闂傚倸鍊搁悧濠勭矙閹邦喖鍨濋悹楦裤€€閺€浠嬫煟閹邦剙绾ч柍缁樻礋閺屾稑鈻庤箛鎾存婵犵鈧磭鎽犵紒妤冨枛閸┾偓妞ゆ巻鍋撴い鏇稻缁傛帞鈧絽鐏氶弲锝夋⒑缂佹ê濮嶆繛浣冲洨宓侀柟鎵閳锋帒霉閿濆懏鍟為柛鐔哄仱閺屾盯寮埀顒勫垂閸喚鏆︽繝闈涙-閸氬顭跨捄渚剰闁逞屽墮閻栧ジ寮诲☉銏╂晝闁绘ɑ褰冩慨鏇㈡⒑缁嬪尅鍔熼柡浣割煼楠炲啫鐣¢幍铏€婚棅顐㈡处閹尖晜绂掗崜褏纾藉ù锝嗗絻娴滈箖姊洪崨濠傚闁哄倸鍊圭粋宥呪堪閸喓鍘繝鐢靛仜閻忔繈宕濋悽鍛婎棅妞ゆ帒顦晶顖涖亜閵婏絽鍔﹂柟顔界懅閹风姾顦堕柛姘煎亰閹鈻撻崹顔界亞缂備緡鍠楅悷鈺呭Υ娴e壊娼ㄩ柍褜鍓熼獮鍐ㄢ枎閹炬惌妫冨┑鐐村灦宀e潡顢欓崶顒佲拻闁稿本鑹鹃埀顒勵棑缁牊绗熼埀顒勭嵁婢舵劖鏅搁柣妯垮皺椤︻噣姊虹涵鍛涧缂佺姵鍨圭划鍫熷緞閹邦剛顔愬┑鐑囩秵閸撴瑦淇婇懖鈺冩/闁诡垎鍛ㄩ梺鍝勮閸旀垿骞冮妶澶婄<婵炴垶锕╂导锟�

试题详情

4.点与直线的位置关系

点P(x0,y0)在直线Ax+By+C=0上的充要条件是

Ax0+By0+C=0.

点到直线的距离公式

点P(x0,y0)到直线Ax+By+C=0的距离是

d=

据此可推出:

(1)两平行线间的距离公式

两平行直线Ax+By+C1=0和Ax+By+C2=0间的距离为

d=.

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鏁愭径濠勵吅闂佹寧绻傞幉娑㈠箻缂佹ḿ鍘遍梺闈涚墕閹冲酣顢旈銏$厸閻忕偛澧藉ú瀛橆殽閻愯揪鑰块柟宕囧█椤㈡寰勭€f挻绮撳缁樻媴鐟欏嫬浠╅梺鍛婃煥缁夊爼骞戦姀銈呯妞ゆ柨妲堥敃鍌涚厱闁哄洢鍔岄悘鐘绘煕閹般劌浜惧┑锛勫亼閸婃牠宕濋敃鈧…鍧楀焵椤掑倻纾兼い鏃傚帶椤e磭绱掓潏銊﹀鞍闁瑰嘲鎳橀獮鎾诲箳瀹ュ拋妫滃┑鐘垫暩婵即宕归悡搴樻灃婵炴垯鍩勯弫鍕煕閺囥劌骞楃€规洘鐓¢弻娑㈠焺閸愵亖濮囬梺缁樻尭缁绘﹢寮诲☉銏╂晝闁挎繂娲ㄩ悾娲⒑闂堚晝绋绘俊鐐扮矙瀵鈽夐姀鈩冩珳闂佸憡渚楅崰娑氭兜閳ь剛绱撻崒娆愮グ濡炴潙鎽滈弫顕€鏁撻悩鑼暫闂佸啿鎼幊蹇浰夐崼鐔虹闁瑰鍋涚粭姘舵煟鎼存繂宓嗘慨濠勭帛閹峰懘宕ㄦ繝鍐ㄥ壍闂備焦妞块崜娆撳Χ缁嬭法鏆﹀ù鍏兼綑閸愨偓濡炪倖鎸炬慨瀵哥矈閿曞倹鈷戠痪顓炴噺瑜把呯磼閻樺啿鐏╃紒顔款嚙閳藉濮€閳锯偓閹峰姊洪崜鎻掍簽闁哥姵鎹囬崺濠囧即閻旂繝绨婚梺鍝勫€搁悘婵嬵敂椤撶喐鍙忓┑鐘插鐢盯鏌熷畡鐗堝殗鐎规洏鍔嶇换婵嬪磼濞戞瑧鏆┑鐘垫暩閸庢垹寰婇挊澹濇椽鏁冮埀顒勨€旈崘鈺冾浄閻庯綆鍋呭▍婊堟⒑缂佹ê濮堟繛鍏肩懅濞嗐垽鎮欓悜妯煎幍闂備緡鍙忕粻鎴﹀礉閿曞倹鐓ラ柡鍥╁仜閳ь剙缍婇幃锟犲即閵忥紕鍘搁梺鎼炲劘閸庤鲸淇婃總鍛婄厽闊洦娲栨牎婵烇絽娲ら敃顏堛€侀弴銏℃櫜闊洦鍩冮崑鎾诲锤濡や胶鍘搁柣蹇曞仜婢ц棄煤閹绢喗鐓冮柕澶樺灣閻e灚顨ラ悙宸剰闁宠鍨垮畷鍫曞煛閳ь剚绔熼弴鐘电=闁稿本鑹鹃埀顒勵棑缁牊绗熼埀顒勩€侀弽顓炲窛妞ゆ牗绋戞惔濠囨⒑閸︻厼顣兼繝銏★耿閹€愁潨閳ь剟寮婚悢鍛婄秶濡わ絽鍟宥夋⒑缁嬪尅鍔熼柛蹇旓耿瀵濡堕崶褎鐎抽梺鍛婎殘閸嬫盯锝為锔解拺闁告稑锕ラ悡銉╂煙鐠囇呯?闁瑰箍鍨归埥澶婎潩閿濆懍澹曞┑鐐村灦閻燂紕绱撳鑸电厽妞ゆ挻绮岄埀顒佹礋濠€浣糕攽閻樿宸ョ紒銊ㄥ亹閼鸿京绱掑Ο闀愮盎闂佸搫娴傛禍鐐电矙閼姐倗纾肩紓浣贯缚缁犳挻銇勯锝囩疄妞ゃ垺锕㈤幃銏ゅ礈闊厽鍩涢梻鍌氬€搁崐鐑芥嚄閸撲礁鍨濇い鏍ㄧ〒娴犳岸姊虹拠鑼缂佺粯鍨块幃鐑藉煛娴g儤娈鹃梺瑙勫婢ф宕愰悜鑺ョ厽闁瑰鍊戝璺虹婵炲樊浜濋悡鐔煎箹缁懓澧查悹鎰ㄢ偓鏂ユ斀妞ゆ梻鍋撻弳顒€鈹戦埄鍐╁唉鐎规洘锕㈤崺锟犲焵椤掑倹宕查柛鈩冪⊕閻撶喖鏌熼柇锕€骞楃紓宥嗗灦缁绘盯骞栭鐐寸亶濡炪們鍔婇崕鐢稿箖濞嗗浚鍟呮い鏃傚帶婢瑰淇婇悙顏勨偓褎淇婇崶銊︽珷婵°倕鎳庣粻姘舵煛閸愩劎澧涢柡鍛叀閺屾盯濡烽埡濠冾棖闁瑰吋娼欓敃顏勵潖婵犳艾纾兼繛鍡樺笒閸橈紕绱撴笟鍥ф珮闁搞劏娉涢悾宄扳攽鐎n偅娅囬梺绋挎湰濮樸劑藝椤撶偐鏀介柣鎰级椤ョ偤鏌熺粙鎸庢喐缂侇喖鐗婂鍕箛椤撶姴甯鹃梻浣稿閸嬪懐鎹㈤崘顔㈠骞樼搾浣烘嚀楗即宕熼鐘靛帒闂備線娼уú銈団偓姘嵆閻涱喖螣閸忕厧纾梺鐑╂櫆鐢洭宕规禒瀣摕婵炴垶顭傞悢鍏兼優閻熸瑥瀚崰鏍ㄤ繆閻愵亜鈧垿宕濇繝鍥х?闁汇垻枪缁犳牗绻涢崱妯诲碍缂佺姷鏁婚弻鐔兼倻濡闉嶅銈嗘煥鐎氭澘顫忓ú顏勭鐟滃繒鏁☉銏$厽婵°倕鍟埢鍫⑩偓娈垮枦椤曆囧煡婢跺á鐔兼煥鐎e灚缍岄梻鍌欑閹诧繝銆冮崼銉ョ;闁绘劗鍎ら崐鍫曟煕椤愩倕鏋旂紒鐘荤畺閹鎮介惂璇茬秺椤㈡挸鐣濋崟顒傚幈濠电偛妫楃换鎰板汲濞嗘劑浜滄い鎰╁灮缁犲鏌熼悡搴gШ鐎规洜鍏橀、姗€鎮崨顖氱哎婵犵數濮甸鏍窗濡ゅ懌鈧啴宕ㄩ鍥ㄧ☉閳诲酣骞橀弶鎴滄偅闂備礁澹婇崑鍛哄鈧崺娑㈠箣閻樼數锛濇繛杈剧悼濞呫垺绗熷☉娆戠闁割偆鍠愰ˉ鍫ユ煛鐏炶濮傜€殿喗鎸虫俊鎼佸Χ婢跺﹣绮i梻鍌欒兌缁垱绗熷Δ鍛獥婵炴垶姘ㄦ稉宥嗙箾閹寸們姘i崼鐔虹闁糕剝锚閻忋儱鈹戦鑺ュ€愰柡宀嬬稻閹棃鏁嶉崟顓熸闂備胶枪妤犵ǹ鐣烽鍐罕闁诲骸鍘滈崑鎾绘煕閺囥劌浜炴い鏂挎閳规垿鎮欓崣澶嗘灆婵炲瓨绮嶇换鍫ュ春濞戙垹绠i柨鏃傛櫕閸樺崬鈹戦悙鏉戠仸闁挎洦鍋婂畷婵嬫偄閾忓湱锛滈梺缁樓瑰▍鏇炵暦瀹€鍕厵妞ゆ梻鐡斿▓鏃€銇勯锝囩疄闁诡喒鍓濋幆鏃堟晬閸曨厽缍侀梻鍌氬€峰ù鍥ь浖閵娧呯焼濞达綀娅i惌鎾绘煟閻旂厧浜伴柛銈嗘礃閵囧嫰寮村Δ鈧禍楣冩倵鐟欏嫭绀冮悽顖涘浮閵堫亝瀵奸弶鎴炪仢闂佸憡鍔︽禍婊呰姳閵夆晜鈷掗柛灞捐壘閳ь剟顥撶划鍫熺瑹閳ь剟鐛弽顓ф晝闁靛牆妫楁禒蹇擃渻閵堝棗濮х紒鐘冲灩婢规洟宕稿Δ浣哄幍闂佽鍨卞妯款暱闂備胶枪椤戝倿寮插⿰鍛床婵炴垶锕╅崯鍛亜閺冨洤鍚归柛鎴濈秺濮婅櫣绱掑Ο璇查瀺缂備礁顑嗛崹鍨耿娓氣偓濮婃椽骞愭惔锝囩暤闂佺懓鍟跨换姗€鐛径鎰濞达絽鎲¢悗顒勬⒑閸撴彃浜濋柟顖氾躬瀵噣宕奸悢铚傛睏闂傚倸鍊搁悧濠勭矙閹邦喖鍨濋悹楦裤€€閺€浠嬫煟閹邦剙绾ч柍缁樻礋閺屾稑鈻庤箛鎾存婵犵鈧磭鎽犵紒妤冨枛閸┾偓妞ゆ巻鍋撴い鏇稻缁傛帞鈧絽鐏氶弲锝夋⒑缂佹ê濮嶆繛浣冲洨宓侀柟鎵閳锋帒霉閿濆懏鍟為柛鐔哄仱閺屾盯寮埀顒勫垂閸喚鏆︽繝闈涙-閸氬顭跨捄渚剰闁逞屽墮閻栧ジ寮诲☉銏╂晝闁绘ɑ褰冩慨鏇㈡⒑缁嬪尅鍔熼柡浣割煼楠炲啫鐣¢幍铏€婚棅顐㈡处閹尖晜绂掗崜褏纾藉ù锝嗗絻娴滈箖姊洪崨濠傚闁哄倸鍊圭粋宥呪堪閸喓鍘繝鐢靛仜閻忔繈宕濋悽鍛婎棅妞ゆ帒顦晶顖涖亜閵婏絽鍔﹂柟顔界懅閹风姾顦堕柛姘煎亰閹鈻撻崹顔界亞缂備緡鍠楅悷鈺呭Υ娴e壊娼ㄩ柍褜鍓熼獮鍐ㄢ枎閹炬惌妫冨┑鐐村灦宀e潡顢欓崶顒佲拻闁稿本鑹鹃埀顒勵棑缁牊绗熼埀顒勭嵁婢舵劖鏅搁柣妯垮皺椤︻噣姊虹涵鍛涧缂佺姵鍨圭划鍫熷緞閹邦剛顔愬┑鐑囩秵閸撴瑦淇婇懖鈺冩/闁诡垎鍛ㄩ梺鍝勮閸旀垿骞冮妶澶婄<婵炴垶锕╂导锟�

试题详情

3.直线的方程

直线方程的几种形式

名称
已知条件
方程
说明
斜截式
斜率k纵截距b
y=kx+bx
不包括y轴和平行于y轴的直线
点斜式
点P 1(x1,y1)斜率k
y-y1=k(x-x1)
不包括y轴和平行于y轴的直线
两点式
点P1(x1,y1)和P2(x2,y2)

不包括坐标轴和平行于坐标轴的直线
截距式
横截距a纵坐标b
=1
不包括坐标轴,平行于坐标轴和过原点的直线
一般式
-
Ax+By+C=0
A、B不同时为0

两条直线的位置关系

当直线不平行于坐标轴时:

(1)直线l1到l2的角  直线l1依逆时针方向旋转到与l2重合时所转的角,叫做l1 到l2的角.

计算公式

设直线l1,l2的斜率分别是k1,k2,则

tgθ=    (k1k2≠-1)

(2)两条直线的夹角一条直线到另一条直线的角小于直角的角,即两条直线所成的锐角叫做两条直线所成的角,简称夹角.这时的计算公式为:tgθ=

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鏁愭径濠勵吅闂佹寧绻傞幉娑㈠箻缂佹ḿ鍘遍梺闈涚墕閹冲酣顢旈銏$厸閻忕偛澧藉ú瀛橆殽閻愯揪鑰块柟宕囧█椤㈡寰勭€f挻绮撳缁樻媴鐟欏嫬浠╅梺鍛婃煥缁夊爼骞戦姀銈呯妞ゆ柨妲堥敃鍌涚厱闁哄洢鍔岄悘鐘绘煕閹般劌浜惧┑锛勫亼閸婃牠宕濋敃鈧…鍧楀焵椤掑倻纾兼い鏃傚帶椤e磭绱掓潏銊﹀鞍闁瑰嘲鎳橀獮鎾诲箳瀹ュ拋妫滃┑鐘垫暩婵即宕归悡搴樻灃婵炴垯鍩勯弫鍕煕閺囥劌骞楃€规洘鐓¢弻娑㈠焺閸愵亖濮囬梺缁樻尭缁绘﹢寮诲☉銏╂晝闁挎繂娲ㄩ悾娲⒑闂堚晝绋绘俊鐐扮矙瀵鈽夐姀鈩冩珳闂佸憡渚楅崰娑氭兜閳ь剛绱撻崒娆愮グ濡炴潙鎽滈弫顕€鏁撻悩鑼暫闂佸啿鎼幊蹇浰夐崼鐔虹闁瑰鍋涚粭姘舵煟鎼存繂宓嗘慨濠勭帛閹峰懘宕ㄦ繝鍐ㄥ壍闂備焦妞块崜娆撳Χ缁嬭法鏆﹀ù鍏兼綑閸愨偓濡炪倖鎸炬慨瀵哥矈閿曞倹鈷戠痪顓炴噺瑜把呯磼閻樺啿鐏╃紒顔款嚙閳藉濮€閳锯偓閹峰姊洪崜鎻掍簽闁哥姵鎹囬崺濠囧即閻旂繝绨婚梺鍝勫€搁悘婵嬵敂椤撶喐鍙忓┑鐘插鐢盯鏌熷畡鐗堝殗鐎规洏鍔嶇换婵嬪磼濞戞瑧鏆┑鐘垫暩閸庢垹寰婇挊澹濇椽鏁冮埀顒勨€旈崘鈺冾浄閻庯綆鍋呭▍婊堟⒑缂佹ê濮堟繛鍏肩懅濞嗐垽鎮欓悜妯煎幍闂備緡鍙忕粻鎴﹀礉閿曞倹鐓ラ柡鍥╁仜閳ь剙缍婇幃锟犲即閵忥紕鍘搁梺鎼炲劘閸庤鲸淇婃總鍛婄厽闊洦娲栨牎婵烇絽娲ら敃顏堛€侀弴銏℃櫜闊洦鍩冮崑鎾诲锤濡や胶鍘搁柣蹇曞仜婢ц棄煤閹绢喗鐓冮柕澶樺灣閻e灚顨ラ悙宸剰闁宠鍨垮畷鍫曞煛閳ь剚绔熼弴鐘电=闁稿本鑹鹃埀顒勵棑缁牊绗熼埀顒勩€侀弽顓炲窛妞ゆ牗绋戞惔濠囨⒑閸︻厼顣兼繝銏★耿閹€愁潨閳ь剟寮婚悢鍛婄秶濡わ絽鍟宥夋⒑缁嬪尅鍔熼柛蹇旓耿瀵濡堕崶褎鐎抽梺鍛婎殘閸嬫盯锝為锔解拺闁告稑锕ラ悡銉╂煙鐠囇呯?闁瑰箍鍨归埥澶婎潩閿濆懍澹曞┑鐐村灦閻燂紕绱撳鑸电厽妞ゆ挻绮岄埀顒佹礋濠€浣糕攽閻樿宸ョ紒銊ㄥ亹閼鸿京绱掑Ο闀愮盎闂佸搫娴傛禍鐐电矙閼姐倗纾肩紓浣贯缚缁犳挻銇勯锝囩疄妞ゃ垺锕㈤幃銏ゅ礈闊厽鍩涢梻鍌氬€搁崐鐑芥嚄閸撲礁鍨濇い鏍ㄧ〒娴犳岸姊虹拠鑼缂佺粯鍨块幃鐑藉煛娴g儤娈鹃梺瑙勫婢ф宕愰悜鑺ョ厽闁瑰鍊戝璺虹婵炲樊浜濋悡鐔煎箹缁懓澧查悹鎰ㄢ偓鏂ユ斀妞ゆ梻鍋撻弳顒€鈹戦埄鍐╁唉鐎规洘锕㈤崺锟犲焵椤掑倹宕查柛鈩冪⊕閻撶喖鏌熼柇锕€骞楃紓宥嗗灦缁绘盯骞栭鐐寸亶濡炪們鍔婇崕鐢稿箖濞嗗浚鍟呮い鏃傚帶婢瑰淇婇悙顏勨偓褎淇婇崶銊︽珷婵°倕鎳庣粻姘舵煛閸愩劎澧涢柡鍛叀閺屾盯濡烽埡濠冾棖闁瑰吋娼欓敃顏勵潖婵犳艾纾兼繛鍡樺笒閸橈紕绱撴笟鍥ф珮闁搞劏娉涢悾宄扳攽鐎n偅娅囬梺绋挎湰濮樸劑藝椤撶偐鏀介柣鎰级椤ョ偤鏌熺粙鎸庢喐缂侇喖鐗婂鍕箛椤撶姴甯鹃梻浣稿閸嬪懐鎹㈤崘顔㈠骞樼搾浣烘嚀楗即宕熼鐘靛帒闂備線娼уú銈団偓姘嵆閻涱喖螣閸忕厧纾梺鐑╂櫆鐢洭宕规禒瀣摕婵炴垶顭傞悢鍏兼優閻熸瑥瀚崰鏍ㄤ繆閻愵亜鈧垿宕濇繝鍥х?闁汇垻枪缁犳牗绻涢崱妯诲碍缂佺姷鏁婚弻鐔兼倻濡闉嶅銈嗘煥鐎氭澘顫忓ú顏勭鐟滃繒鏁☉銏$厽婵°倕鍟埢鍫⑩偓娈垮枦椤曆囧煡婢跺á鐔兼煥鐎e灚缍岄梻鍌欑閹诧繝銆冮崼銉ョ;闁绘劗鍎ら崐鍫曟煕椤愩倕鏋旂紒鐘荤畺閹鎮介惂璇茬秺椤㈡挸鐣濋崟顒傚幈濠电偛妫楃换鎰板汲濞嗘劑浜滄い鎰╁灮缁犲鏌熼悡搴gШ鐎规洜鍏橀、姗€鎮崨顖氱哎婵犵數濮甸鏍窗濡ゅ懌鈧啴宕ㄩ鍥ㄧ☉閳诲酣骞橀弶鎴滄偅闂備礁澹婇崑鍛哄鈧崺娑㈠箣閻樼數锛濇繛杈剧悼濞呫垺绗熷☉娆戠闁割偆鍠愰ˉ鍫ユ煛鐏炶濮傜€殿喗鎸虫俊鎼佸Χ婢跺﹣绮i梻鍌欒兌缁垱绗熷Δ鍛獥婵炴垶姘ㄦ稉宥嗙箾閹寸們姘i崼鐔虹闁糕剝锚閻忋儱鈹戦鑺ュ€愰柡宀嬬稻閹棃鏁嶉崟顓熸闂備胶枪妤犵ǹ鐣烽鍐罕闁诲骸鍘滈崑鎾绘煕閺囥劌浜炴い鏂挎閳规垿鎮欓崣澶嗘灆婵炲瓨绮嶇换鍫ュ春濞戙垹绠i柨鏃傛櫕閸樺崬鈹戦悙鏉戠仸闁挎洦鍋婂畷婵嬫偄閾忓湱锛滈梺缁樓瑰▍鏇炵暦瀹€鍕厵妞ゆ梻鐡斿▓鏃€銇勯锝囩疄闁诡喒鍓濋幆鏃堟晬閸曨厽缍侀梻鍌氬€峰ù鍥ь浖閵娧呯焼濞达綀娅i惌鎾绘煟閻旂厧浜伴柛銈嗘礃閵囧嫰寮村Δ鈧禍楣冩倵鐟欏嫭绀冮悽顖涘浮閵堫亝瀵奸弶鎴炪仢闂佸憡鍔︽禍婊呰姳閵夆晜鈷掗柛灞捐壘閳ь剟顥撶划鍫熺瑹閳ь剟鐛弽顓ф晝闁靛牆妫楁禒蹇擃渻閵堝棗濮х紒鐘冲灩婢规洟宕稿Δ浣哄幍闂佽鍨卞妯款暱闂備胶枪椤戝倿寮插⿰鍛床婵炴垶锕╅崯鍛亜閺冨洤鍚归柛鎴濈秺濮婅櫣绱掑Ο璇查瀺缂備礁顑嗛崹鍨耿娓氣偓濮婃椽骞愭惔锝囩暤闂佺懓鍟跨换姗€鐛径鎰濞达絽鎲¢悗顒勬⒑閸撴彃浜濋柟顖氾躬瀵噣宕奸悢铚傛睏闂傚倸鍊搁悧濠勭矙閹邦喖鍨濋悹楦裤€€閺€浠嬫煟閹邦剙绾ч柍缁樻礋閺屾稑鈻庤箛鎾存婵犵鈧磭鎽犵紒妤冨枛閸┾偓妞ゆ巻鍋撴い鏇稻缁傛帞鈧絽鐏氶弲锝夋⒑缂佹ê濮嶆繛浣冲洨宓侀柟鎵閳锋帒霉閿濆懏鍟為柛鐔哄仱閺屾盯寮埀顒勫垂閸喚鏆︽繝闈涙-閸氬顭跨捄渚剰闁逞屽墮閻栧ジ寮诲☉銏╂晝闁绘ɑ褰冩慨鏇㈡⒑缁嬪尅鍔熼柡浣割煼楠炲啫鐣¢幍铏€婚棅顐㈡处閹尖晜绂掗崜褏纾藉ù锝嗗絻娴滈箖姊洪崨濠傚闁哄倸鍊圭粋宥呪堪閸喓鍘繝鐢靛仜閻忔繈宕濋悽鍛婎棅妞ゆ帒顦晶顖涖亜閵婏絽鍔﹂柟顔界懅閹风姾顦堕柛姘煎亰閹鈻撻崹顔界亞缂備緡鍠楅悷鈺呭Υ娴e壊娼ㄩ柍褜鍓熼獮鍐ㄢ枎閹炬惌妫冨┑鐐村灦宀e潡顢欓崶顒佲拻闁稿本鑹鹃埀顒勵棑缁牊绗熼埀顒勭嵁婢舵劖鏅搁柣妯垮皺椤︻噣姊虹涵鍛涧缂佺姵鍨圭划鍫熷緞閹邦剛顔愬┑鐑囩秵閸撴瑦淇婇懖鈺冩/闁诡垎鍛ㄩ梺鍝勮閸旀垿骞冮妶澶婄<婵炴垶锕╂导锟�

试题详情

2.线段的定比分点

有向直线l上的一点P,把l上的有向线段分成两条有向线段分成两条有向线段,则的数量之比

λ=

定比分点公式  若P1、P2两点坐标为(x1,y1),(x2,y2),点P(x,y)分有向线段成定比

λ= (λ≠-1),

则P点坐标

x=,   y=.

(1).中点公式  设P1(x1,y1),P2(x2,y2),则P1P2的中点P(x,y)的坐标是

x=,   y=.

(2)三角形的重心公式  若△ABC的各顶点坐标分别为A(x1,y1),B(x2,y2),C(x3,y 3),则△ABC的重心G(x,y)的坐标是

x=,    y=

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鏁愭径濠勵吅闂佹寧绻傞幉娑㈠箻缂佹ḿ鍘遍梺闈涚墕閹冲酣顢旈銏$厸閻忕偛澧藉ú瀛橆殽閻愯揪鑰块柟宕囧█椤㈡寰勭€f挻绮撳缁樻媴鐟欏嫬浠╅梺鍛婃煥缁夊爼骞戦姀銈呯妞ゆ柨妲堥敃鍌涚厱闁哄洢鍔岄悘鐘绘煕閹般劌浜惧┑锛勫亼閸婃牠宕濋敃鈧…鍧楀焵椤掑倻纾兼い鏃傚帶椤e磭绱掓潏銊﹀鞍闁瑰嘲鎳橀獮鎾诲箳瀹ュ拋妫滃┑鐘垫暩婵即宕归悡搴樻灃婵炴垯鍩勯弫鍕煕閺囥劌骞楃€规洘鐓¢弻娑㈠焺閸愵亖濮囬梺缁樻尭缁绘﹢寮诲☉銏╂晝闁挎繂娲ㄩ悾娲⒑闂堚晝绋绘俊鐐扮矙瀵鈽夐姀鈩冩珳闂佸憡渚楅崰娑氭兜閳ь剛绱撻崒娆愮グ濡炴潙鎽滈弫顕€鏁撻悩鑼暫闂佸啿鎼幊蹇浰夐崼鐔虹闁瑰鍋涚粭姘舵煟鎼存繂宓嗘慨濠勭帛閹峰懘宕ㄦ繝鍐ㄥ壍闂備焦妞块崜娆撳Χ缁嬭法鏆﹀ù鍏兼綑閸愨偓濡炪倖鎸炬慨瀵哥矈閿曞倹鈷戠痪顓炴噺瑜把呯磼閻樺啿鐏╃紒顔款嚙閳藉濮€閳锯偓閹峰姊洪崜鎻掍簽闁哥姵鎹囬崺濠囧即閻旂繝绨婚梺鍝勫€搁悘婵嬵敂椤撶喐鍙忓┑鐘插鐢盯鏌熷畡鐗堝殗鐎规洏鍔嶇换婵嬪磼濞戞瑧鏆┑鐘垫暩閸庢垹寰婇挊澹濇椽鏁冮埀顒勨€旈崘鈺冾浄閻庯綆鍋呭▍婊堟⒑缂佹ê濮堟繛鍏肩懅濞嗐垽鎮欓悜妯煎幍闂備緡鍙忕粻鎴﹀礉閿曞倹鐓ラ柡鍥╁仜閳ь剙缍婇幃锟犲即閵忥紕鍘搁梺鎼炲劘閸庤鲸淇婃總鍛婄厽闊洦娲栨牎婵烇絽娲ら敃顏堛€侀弴銏℃櫜闊洦鍩冮崑鎾诲锤濡や胶鍘搁柣蹇曞仜婢ц棄煤閹绢喗鐓冮柕澶樺灣閻e灚顨ラ悙宸剰闁宠鍨垮畷鍫曞煛閳ь剚绔熼弴鐘电=闁稿本鑹鹃埀顒勵棑缁牊绗熼埀顒勩€侀弽顓炲窛妞ゆ牗绋戞惔濠囨⒑閸︻厼顣兼繝銏★耿閹€愁潨閳ь剟寮婚悢鍛婄秶濡わ絽鍟宥夋⒑缁嬪尅鍔熼柛蹇旓耿瀵濡堕崶褎鐎抽梺鍛婎殘閸嬫盯锝為锔解拺闁告稑锕ラ悡銉╂煙鐠囇呯?闁瑰箍鍨归埥澶婎潩閿濆懍澹曞┑鐐村灦閻燂紕绱撳鑸电厽妞ゆ挻绮岄埀顒佹礋濠€浣糕攽閻樿宸ョ紒銊ㄥ亹閼鸿京绱掑Ο闀愮盎闂佸搫娴傛禍鐐电矙閼姐倗纾肩紓浣贯缚缁犳挻銇勯锝囩疄妞ゃ垺锕㈤幃銏ゅ礈闊厽鍩涢梻鍌氬€搁崐鐑芥嚄閸撲礁鍨濇い鏍ㄧ〒娴犳岸姊虹拠鑼缂佺粯鍨块幃鐑藉煛娴g儤娈鹃梺瑙勫婢ф宕愰悜鑺ョ厽闁瑰鍊戝璺虹婵炲樊浜濋悡鐔煎箹缁懓澧查悹鎰ㄢ偓鏂ユ斀妞ゆ梻鍋撻弳顒€鈹戦埄鍐╁唉鐎规洘锕㈤崺锟犲焵椤掑倹宕查柛鈩冪⊕閻撶喖鏌熼柇锕€骞楃紓宥嗗灦缁绘盯骞栭鐐寸亶濡炪們鍔婇崕鐢稿箖濞嗗浚鍟呮い鏃傚帶婢瑰淇婇悙顏勨偓褎淇婇崶銊︽珷婵°倕鎳庣粻姘舵煛閸愩劎澧涢柡鍛叀閺屾盯濡烽埡濠冾棖闁瑰吋娼欓敃顏勵潖婵犳艾纾兼繛鍡樺笒閸橈紕绱撴笟鍥ф珮闁搞劏娉涢悾宄扳攽鐎n偅娅囬梺绋挎湰濮樸劑藝椤撶偐鏀介柣鎰级椤ョ偤鏌熺粙鎸庢喐缂侇喖鐗婂鍕箛椤撶姴甯鹃梻浣稿閸嬪懐鎹㈤崘顔㈠骞樼搾浣烘嚀楗即宕熼鐘靛帒闂備線娼уú銈団偓姘嵆閻涱喖螣閸忕厧纾梺鐑╂櫆鐢洭宕规禒瀣摕婵炴垶顭傞悢鍏兼優閻熸瑥瀚崰鏍ㄤ繆閻愵亜鈧垿宕濇繝鍥х?闁汇垻枪缁犳牗绻涢崱妯诲碍缂佺姷鏁婚弻鐔兼倻濡闉嶅銈嗘煥鐎氭澘顫忓ú顏勭鐟滃繒鏁☉銏$厽婵°倕鍟埢鍫⑩偓娈垮枦椤曆囧煡婢跺á鐔兼煥鐎e灚缍岄梻鍌欑閹诧繝銆冮崼銉ョ;闁绘劗鍎ら崐鍫曟煕椤愩倕鏋旂紒鐘荤畺閹鎮介惂璇茬秺椤㈡挸鐣濋崟顒傚幈濠电偛妫楃换鎰板汲濞嗘劑浜滄い鎰╁灮缁犲鏌熼悡搴gШ鐎规洜鍏橀、姗€鎮崨顖氱哎婵犵數濮甸鏍窗濡ゅ懌鈧啴宕ㄩ鍥ㄧ☉閳诲酣骞橀弶鎴滄偅闂備礁澹婇崑鍛哄鈧崺娑㈠箣閻樼數锛濇繛杈剧悼濞呫垺绗熷☉娆戠闁割偆鍠愰ˉ鍫ユ煛鐏炶濮傜€殿喗鎸虫俊鎼佸Χ婢跺﹣绮i梻鍌欒兌缁垱绗熷Δ鍛獥婵炴垶姘ㄦ稉宥嗙箾閹寸們姘i崼鐔虹闁糕剝锚閻忋儱鈹戦鑺ュ€愰柡宀嬬稻閹棃鏁嶉崟顓熸闂備胶枪妤犵ǹ鐣烽鍐罕闁诲骸鍘滈崑鎾绘煕閺囥劌浜炴い鏂挎閳规垿鎮欓崣澶嗘灆婵炲瓨绮嶇换鍫ュ春濞戙垹绠i柨鏃傛櫕閸樺崬鈹戦悙鏉戠仸闁挎洦鍋婂畷婵嬫偄閾忓湱锛滈梺缁樓瑰▍鏇炵暦瀹€鍕厵妞ゆ梻鐡斿▓鏃€銇勯锝囩疄闁诡喒鍓濋幆鏃堟晬閸曨厽缍侀梻鍌氬€峰ù鍥ь浖閵娧呯焼濞达綀娅i惌鎾绘煟閻旂厧浜伴柛銈嗘礃閵囧嫰寮村Δ鈧禍楣冩倵鐟欏嫭绀冮悽顖涘浮閵堫亝瀵奸弶鎴炪仢闂佸憡鍔︽禍婊呰姳閵夆晜鈷掗柛灞捐壘閳ь剟顥撶划鍫熺瑹閳ь剟鐛弽顓ф晝闁靛牆妫楁禒蹇擃渻閵堝棗濮х紒鐘冲灩婢规洟宕稿Δ浣哄幍闂佽鍨卞妯款暱闂備胶枪椤戝倿寮插⿰鍛床婵炴垶锕╅崯鍛亜閺冨洤鍚归柛鎴濈秺濮婅櫣绱掑Ο璇查瀺缂備礁顑嗛崹鍨耿娓氣偓濮婃椽骞愭惔锝囩暤闂佺懓鍟跨换姗€鐛径鎰濞达絽鎲¢悗顒勬⒑閸撴彃浜濋柟顖氾躬瀵噣宕奸悢铚傛睏闂傚倸鍊搁悧濠勭矙閹邦喖鍨濋悹楦裤€€閺€浠嬫煟閹邦剙绾ч柍缁樻礋閺屾稑鈻庤箛鎾存婵犵鈧磭鎽犵紒妤冨枛閸┾偓妞ゆ巻鍋撴い鏇稻缁傛帞鈧絽鐏氶弲锝夋⒑缂佹ê濮嶆繛浣冲洨宓侀柟鎵閳锋帒霉閿濆懏鍟為柛鐔哄仱閺屾盯寮埀顒勫垂閸喚鏆︽繝闈涙-閸氬顭跨捄渚剰闁逞屽墮閻栧ジ寮诲☉銏╂晝闁绘ɑ褰冩慨鏇㈡⒑缁嬪尅鍔熼柡浣割煼楠炲啫鐣¢幍铏€婚棅顐㈡处閹尖晜绂掗崜褏纾藉ù锝嗗絻娴滈箖姊洪崨濠傚闁哄倸鍊圭粋宥呪堪閸喓鍘繝鐢靛仜閻忔繈宕濋悽鍛婎棅妞ゆ帒顦晶顖涖亜閵婏絽鍔﹂柟顔界懅閹风姾顦堕柛姘煎亰閹鈻撻崹顔界亞缂備緡鍠楅悷鈺呭Υ娴e壊娼ㄩ柍褜鍓熼獮鍐ㄢ枎閹炬惌妫冨┑鐐村灦宀e潡顢欓崶顒佲拻闁稿本鑹鹃埀顒勵棑缁牊绗熼埀顒勭嵁婢舵劖鏅搁柣妯垮皺椤︻噣姊虹涵鍛涧缂佺姵鍨圭划鍫熷緞閹邦剛顔愬┑鐑囩秵閸撴瑦淇婇懖鈺冩/闁诡垎鍛ㄩ梺鍝勮閸旀垿骞冮妶澶婄<婵炴垶锕╂导锟�

试题详情

1.有向线段

一条有向线段的长度,连同表示它的方向的正负号,叫做有向线段的数量.有向线段的数量用AB表示.

若有向线段在数轴上的坐标为A(x1),B(x2),则

它的数量   AB=x2-x1

它的长度   |AB|=|x2-x1

平面上两点间的距离  设P1(x1,y1),P2(x2,y2)是坐标平面上的任意两点,则 它们的距离

|P1P2|=

当P1P2⊥Ox轴时,|P1P2|=|y2-y1|;当P1P2⊥Oy轴时,|P1P2| =|x2-x1|;点P(x,y)到原点O的距离,|OP|=.

三角形的中线长公式

如图,AO是△ABC的BC边上的中线.则|AB|2+|AC|2

=2[|AO|2+|OC|2

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鏁愭径濠勵吅闂佹寧绻傞幉娑㈠箻缂佹ḿ鍘遍梺闈涚墕閹冲酣顢旈銏$厸閻忕偛澧藉ú瀛橆殽閻愯揪鑰块柟宕囧█椤㈡寰勭€f挻绮撳缁樻媴鐟欏嫬浠╅梺鍛婃煥缁夊爼骞戦姀銈呯妞ゆ柨妲堥敃鍌涚厱闁哄洢鍔岄悘鐘绘煕閹般劌浜惧┑锛勫亼閸婃牠宕濋敃鈧…鍧楀焵椤掑倻纾兼い鏃傚帶椤e磭绱掓潏銊﹀鞍闁瑰嘲鎳橀獮鎾诲箳瀹ュ拋妫滃┑鐘垫暩婵即宕归悡搴樻灃婵炴垯鍩勯弫鍕煕閺囥劌骞楃€规洘鐓¢弻娑㈠焺閸愵亖濮囬梺缁樻尭缁绘﹢寮诲☉銏╂晝闁挎繂娲ㄩ悾娲⒑闂堚晝绋绘俊鐐扮矙瀵鈽夐姀鈩冩珳闂佸憡渚楅崰娑氭兜閳ь剛绱撻崒娆愮グ濡炴潙鎽滈弫顕€鏁撻悩鑼暫闂佸啿鎼幊蹇浰夐崼鐔虹闁瑰鍋涚粭姘舵煟鎼存繂宓嗘慨濠勭帛閹峰懘宕ㄦ繝鍐ㄥ壍闂備焦妞块崜娆撳Χ缁嬭法鏆﹀ù鍏兼綑閸愨偓濡炪倖鎸炬慨瀵哥矈閿曞倹鈷戠痪顓炴噺瑜把呯磼閻樺啿鐏╃紒顔款嚙閳藉濮€閳锯偓閹峰姊洪崜鎻掍簽闁哥姵鎹囬崺濠囧即閻旂繝绨婚梺鍝勫€搁悘婵嬵敂椤撶喐鍙忓┑鐘插鐢盯鏌熷畡鐗堝殗鐎规洏鍔嶇换婵嬪磼濞戞瑧鏆┑鐘垫暩閸庢垹寰婇挊澹濇椽鏁冮埀顒勨€旈崘鈺冾浄閻庯綆鍋呭▍婊堟⒑缂佹ê濮堟繛鍏肩懅濞嗐垽鎮欓悜妯煎幍闂備緡鍙忕粻鎴﹀礉閿曞倹鐓ラ柡鍥╁仜閳ь剙缍婇幃锟犲即閵忥紕鍘搁梺鎼炲劘閸庤鲸淇婃總鍛婄厽闊洦娲栨牎婵烇絽娲ら敃顏堛€侀弴銏℃櫜闊洦鍩冮崑鎾诲锤濡や胶鍘搁柣蹇曞仜婢ц棄煤閹绢喗鐓冮柕澶樺灣閻e灚顨ラ悙宸剰闁宠鍨垮畷鍫曞煛閳ь剚绔熼弴鐘电=闁稿本鑹鹃埀顒勵棑缁牊绗熼埀顒勩€侀弽顓炲窛妞ゆ牗绋戞惔濠囨⒑閸︻厼顣兼繝銏★耿閹€愁潨閳ь剟寮婚悢鍛婄秶濡わ絽鍟宥夋⒑缁嬪尅鍔熼柛蹇旓耿瀵濡堕崶褎鐎抽梺鍛婎殘閸嬫盯锝為锔解拺闁告稑锕ラ悡銉╂煙鐠囇呯?闁瑰箍鍨归埥澶婎潩閿濆懍澹曞┑鐐村灦閻燂紕绱撳鑸电厽妞ゆ挻绮岄埀顒佹礋濠€浣糕攽閻樿宸ョ紒銊ㄥ亹閼鸿京绱掑Ο闀愮盎闂佸搫娴傛禍鐐电矙閼姐倗纾肩紓浣贯缚缁犳挻銇勯锝囩疄妞ゃ垺锕㈤幃銏ゅ礈闊厽鍩涢梻鍌氬€搁崐鐑芥嚄閸撲礁鍨濇い鏍ㄧ〒娴犳岸姊虹拠鑼缂佺粯鍨块幃鐑藉煛娴g儤娈鹃梺瑙勫婢ф宕愰悜鑺ョ厽闁瑰鍊戝璺虹婵炲樊浜濋悡鐔煎箹缁懓澧查悹鎰ㄢ偓鏂ユ斀妞ゆ梻鍋撻弳顒€鈹戦埄鍐╁唉鐎规洘锕㈤崺锟犲焵椤掑倹宕查柛鈩冪⊕閻撶喖鏌熼柇锕€骞楃紓宥嗗灦缁绘盯骞栭鐐寸亶濡炪們鍔婇崕鐢稿箖濞嗗浚鍟呮い鏃傚帶婢瑰淇婇悙顏勨偓褎淇婇崶銊︽珷婵°倕鎳庣粻姘舵煛閸愩劎澧涢柡鍛叀閺屾盯濡烽埡濠冾棖闁瑰吋娼欓敃顏勵潖婵犳艾纾兼繛鍡樺笒閸橈紕绱撴笟鍥ф珮闁搞劏娉涢悾宄扳攽鐎n偅娅囬梺绋挎湰濮樸劑藝椤撶偐鏀介柣鎰级椤ョ偤鏌熺粙鎸庢喐缂侇喖鐗婂鍕箛椤撶姴甯鹃梻浣稿閸嬪懐鎹㈤崘顔㈠骞樼搾浣烘嚀楗即宕熼鐘靛帒闂備線娼уú銈団偓姘嵆閻涱喖螣閸忕厧纾梺鐑╂櫆鐢洭宕规禒瀣摕婵炴垶顭傞悢鍏兼優閻熸瑥瀚崰鏍ㄤ繆閻愵亜鈧垿宕濇繝鍥х?闁汇垻枪缁犳牗绻涢崱妯诲碍缂佺姷鏁婚弻鐔兼倻濡闉嶅銈嗘煥鐎氭澘顫忓ú顏勭鐟滃繒鏁☉銏$厽婵°倕鍟埢鍫⑩偓娈垮枦椤曆囧煡婢跺á鐔兼煥鐎e灚缍岄梻鍌欑閹诧繝銆冮崼銉ョ;闁绘劗鍎ら崐鍫曟煕椤愩倕鏋旂紒鐘荤畺閹鎮介惂璇茬秺椤㈡挸鐣濋崟顒傚幈濠电偛妫楃换鎰板汲濞嗘劑浜滄い鎰╁灮缁犲鏌熼悡搴gШ鐎规洜鍏橀、姗€鎮崨顖氱哎婵犵數濮甸鏍窗濡ゅ懌鈧啴宕ㄩ鍥ㄧ☉閳诲酣骞橀弶鎴滄偅闂備礁澹婇崑鍛哄鈧崺娑㈠箣閻樼數锛濇繛杈剧悼濞呫垺绗熷☉娆戠闁割偆鍠愰ˉ鍫ユ煛鐏炶濮傜€殿喗鎸虫俊鎼佸Χ婢跺﹣绮i梻鍌欒兌缁垱绗熷Δ鍛獥婵炴垶姘ㄦ稉宥嗙箾閹寸們姘i崼鐔虹闁糕剝锚閻忋儱鈹戦鑺ュ€愰柡宀嬬稻閹棃鏁嶉崟顓熸闂備胶枪妤犵ǹ鐣烽鍐罕闁诲骸鍘滈崑鎾绘煕閺囥劌浜炴い鏂挎閳规垿鎮欓崣澶嗘灆婵炲瓨绮嶇换鍫ュ春濞戙垹绠i柨鏃傛櫕閸樺崬鈹戦悙鏉戠仸闁挎洦鍋婂畷婵嬫偄閾忓湱锛滈梺缁樓瑰▍鏇炵暦瀹€鍕厵妞ゆ梻鐡斿▓鏃€銇勯锝囩疄闁诡喒鍓濋幆鏃堟晬閸曨厽缍侀梻鍌氬€峰ù鍥ь浖閵娧呯焼濞达綀娅i惌鎾绘煟閻旂厧浜伴柛銈嗘礃閵囧嫰寮村Δ鈧禍楣冩倵鐟欏嫭绀冮悽顖涘浮閵堫亝瀵奸弶鎴炪仢闂佸憡鍔︽禍婊呰姳閵夆晜鈷掗柛灞捐壘閳ь剟顥撶划鍫熺瑹閳ь剟鐛弽顓ф晝闁靛牆妫楁禒蹇擃渻閵堝棗濮х紒鐘冲灩婢规洟宕稿Δ浣哄幍闂佽鍨卞妯款暱闂備胶枪椤戝倿寮插⿰鍛床婵炴垶锕╅崯鍛亜閺冨洤鍚归柛鎴濈秺濮婅櫣绱掑Ο璇查瀺缂備礁顑嗛崹鍨耿娓氣偓濮婃椽骞愭惔锝囩暤闂佺懓鍟跨换姗€鐛径鎰濞达絽鎲¢悗顒勬⒑閸撴彃浜濋柟顖氾躬瀵噣宕奸悢铚傛睏闂傚倸鍊搁悧濠勭矙閹邦喖鍨濋悹楦裤€€閺€浠嬫煟閹邦剙绾ч柍缁樻礋閺屾稑鈻庤箛鎾存婵犵鈧磭鎽犵紒妤冨枛閸┾偓妞ゆ巻鍋撴い鏇稻缁傛帞鈧絽鐏氶弲锝夋⒑缂佹ê濮嶆繛浣冲洨宓侀柟鎵閳锋帒霉閿濆懏鍟為柛鐔哄仱閺屾盯寮埀顒勫垂閸喚鏆︽繝闈涙-閸氬顭跨捄渚剰闁逞屽墮閻栧ジ寮诲☉銏╂晝闁绘ɑ褰冩慨鏇㈡⒑缁嬪尅鍔熼柡浣割煼楠炲啫鐣¢幍铏€婚棅顐㈡处閹尖晜绂掗崜褏纾藉ù锝嗗絻娴滈箖姊洪崨濠傚闁哄倸鍊圭粋宥呪堪閸喓鍘繝鐢靛仜閻忔繈宕濋悽鍛婎棅妞ゆ帒顦晶顖涖亜閵婏絽鍔﹂柟顔界懅閹风姾顦堕柛姘煎亰閹鈻撻崹顔界亞缂備緡鍠楅悷鈺呭Υ娴e壊娼ㄩ柍褜鍓熼獮鍐ㄢ枎閹炬惌妫冨┑鐐村灦宀e潡顢欓崶顒佲拻闁稿本鑹鹃埀顒勵棑缁牊绗熼埀顒勭嵁婢舵劖鏅搁柣妯垮皺椤︻噣姊虹涵鍛涧缂佺姵鍨圭划鍫熷緞閹邦剛顔愬┑鐑囩秵閸撴瑦淇婇懖鈺冩/闁诡垎鍛ㄩ梺鍝勮閸旀垿骞冮妶澶婄<婵炴垶锕╂导锟�

试题详情

3.掌握两条直线平行与垂直的条件.能够根据直线的方程判定两条直线的位置关系.会求两条 直线的夹角和交点.掌握点到直线的距离公式.

试题详情

2.理解直线斜率的概念,掌握过两点的直线的斜率的公式,熟练掌握直线方程的点斜式,掌 握直线方程的斜截式、两点式、截距式以及直线的一般式.能够根据条件求出直线的方程.

试题详情


同步练习册答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鏁愭径濠勵吅闂佹寧绻傞幉娑㈠箻缂佹ḿ鍘遍梺闈涚墕閹冲酣顢旈銏$厸閻忕偠顕ч埀顒佺箓閻g兘顢曢敃鈧敮闂佹寧妫佹慨銈夋儊鎼粹檧鏀介柣鎰▕閸ょ喎鈹戦鐐毈闁硅櫕绻冮妶锝夊礃閵娧冨箣闂備胶鎳撻顓㈠磻濞戞氨涓嶉柣妯肩帛閳锋垹绱掔€n亜鐨¢柡鈧紒妯镐簻闁靛ǹ鍎查ˉ銏☆殽閻愯尙澧﹀┑鈩冪摃椤︻噣鏌涚€n偅宕屾俊顐㈠暙閳藉鈻庤箛鏃€鐣奸梺璇叉唉椤煤閺嵮屽殨闁割偅娲栫粻鐐烘煏婵炲灝鍔存繛鎾愁煼閹綊宕堕鍕婵犮垼顫夊ú鐔奉潖缂佹ɑ濯撮柧蹇曟嚀缁椻剝绻涢幘瀵割暡妞ゃ劌锕ら悾鐑藉级鎼存挻顫嶅┑顔矫ぐ澶岀箔婢跺ň鏀介柣鎰綑閻忥箓鎳i妶鍡曠箚闁圭粯甯炴晶娑氱磼缂佹ḿ娲寸€规洖宕灒闁告繂瀚峰ḿ鏃€淇婇悙顏勨偓鏇犳崲閹烘绐楅柡宓本缍庣紓鍌欑劍钃卞┑顖涙尦閺屻倝骞侀幒鎴濆Б闂侀潧妫楅敃顏勵潖濞差亝顥堥柍鍝勫暟鑲栫紓鍌欒兌婵敻骞戦崶顒佸仒妞ゆ棁娉曢悿鈧┑鐐村灦閻燂箑鈻嶉姀銈嗏拺閻犳亽鍔屽▍鎰版煙閸戙倖瀚� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈囩磽瀹ュ拑韬€殿喖顭烽幃銏ゅ礂鐏忔牗瀚介梺璇查叄濞佳勭珶婵犲伣锝夘敊閸撗咃紲闂佺粯鍔﹂崜娆撳礉閵堝洨纾界€广儱鎷戦煬顒傗偓娈垮枛椤兘骞冮姀銈呯閻忓繑鐗楃€氫粙姊虹拠鏌ュ弰婵炰匠鍕彾濠电姴浼i敐澶樻晩闁告挆鍜冪床闂備胶绮崝锕傚礈濞嗘垹鐭嗛柛鎰ㄦ杺娴滄粓鏌¢崶褎顥滄繛灞傚€濋幃鈥愁潨閳ь剟寮婚悢鍛婄秶濡わ絽鍟宥夋⒑缁嬫鍎愰柛鏃€鐟╁璇测槈濡攱鐎婚棅顐㈡祫缁茬偓鏅ラ梻鍌欐祰椤曟牠宕板Δ鍛仭鐟滃繐危閹版澘绠婚悗娑櫭鎾绘⒑閸涘﹦绠撻悗姘卞厴閸┾偓妞ゆ巻鍋撻柣顓炲€垮璇测槈閵忕姈鈺呮煏婢诡垰鍟伴崢浠嬫煟鎼淬埄鍟忛柛鐘崇墵閳ワ箓鏌ㄧ€b晝绠氶梺褰掓?缁€渚€鎮″☉銏$厱閻忕偛澧介悡顖滅磼閵娿倗鐭欐慨濠勭帛閹峰懘宕ㄩ棃娑氱Ш鐎殿喚鏁婚、妤呭磼濠婂懐鍘梻浣侯攰閹活亞鈧潧鐭傚顐﹀磼閻愬鍙嗛梺缁樻礀閸婂湱鈧熬鎷�