题目列表(包括答案和解析)
5.如图,已知圆A的半径是2,圆外一定点N与圆A上的点的最短距离为6,过动点P作A的切线PM(M为切点),连结PN使得PM:PN=
,试建立适当
的坐标系,求动点P的轨迹
4.已知圆:
.
(1)直线过点
,且与圆
交于
、
两点,若
,求直线
的方程;
(2)过圆上一动点
作平行于
轴的直线
,设
与
轴的交点为
,若向量
,求动点
的轨迹方程,并说明此轨迹是什么曲线.
3.已知圆C: x2+y2-2x+4y-4=0,是否存在斜率为1的
直线L,使以L 被圆C截得弦AB为直径的圆
经过原点?若存在,写出直线的方程;若不存在,说
明理由
2.如图,设、
分别为椭圆
:
(
)的左、右焦点.
(Ⅰ)设椭圆C上的点 到F1、F2两点距离之和等于4,写出椭圆C的方程和离心率;
(Ⅱ)设点K是(Ⅰ)中所得椭圆上的动点,求线段的中点的轨迹方程.
1.已知动圆过定点,且与直线
相切.
(1) 求动圆的圆心轨迹的方程;
(2) 是否存在直线,使
过点(0,1),并与轨迹
交于
两点,且满足
?若存在,求出直线
的方程;若不存在,说明理由.
21.(本小题满分14分)
若存在实常数和
,使得函数
和
对其定义域上的任意实数
分别满足:
和
,则称直线
为
和
的“隔离直线”.已知
,
为自然对数的底数).
(1)求的极值;
(2)函数和
是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
20. (本小题满分14分)
在直角坐标系中,以
为圆心的圆与直线
相切.
(1)求圆的方程;
(2)圆与
轴相交于
两点,圆内的动点
使
成等比数列,求
的取值范围.
19.(本题满分14分)
已知函数,若对任意
,
且
,都有
.
(1)求实数的取值范围;
(2)对于给定的实数,有一个最小的负数
,使得
时,
都成立,则当
为何值时,
最小,并求出
的最小值.
18.(本小题满分14分)
某个体户计划经销A、B两种商品,据调查统计,当投资额为x万元时,在经销A、B商品中所获得的收益分别为
万元与
万元. 其中
(
);
(
)已知投资额为零时,收益为零。
(1)试求出a、b的值;
(2)如果该个体户准备投入5万元经营这两种商品,请你帮他制定一个资金投入方案,使他能获得最大收益,并求出其收入的最大值.(精确到0.1,参考数据:)
17. (本小题满分12分)
如图,已知多面体ABC-DEFG中,AB、AC、AD两两
互相垂直,平面ABC∥平面DEFG,平面BEF∥平面ADGC,
AB=AD=DG=2,AC=EF=1,
(1)试判断CF是否与平面ABED平行?并说明理由;
(2)求多面体ABC-DEFG的体积。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com