闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳婀遍埀顒傛嚀鐎氼參宕崇壕瀣ㄤ汗闁圭儤鍨归崐鐐差渻閵堝棗绗傜紒鈧笟鈧畷婊堫敇閻戝棙瀵岄梺闈涚墕濡鎱ㄨ缁辨帡鎮╅崘鑼紝闂佺粯渚楅崳锝嗘叏閳ь剟鏌曢崼婵囶棤闁告ɑ鎹囬弻鈩冨緞鐏炴垝娌繝銏㈡嚀濡繂鐣峰┑鍡╁悑闁糕剝鍔掔花濠氭⒑閸濆嫬鈧悂鎮樺┑瀣垫晜妞ゆ劑鍊楃壕濂稿级閸稑濡界€规洖鐬奸埀顒冾潐濞叉ḿ鏁幒妤嬬稏婵犻潧顑愰弫鍕煢濡警妲峰瑙勬礋濮婃椽宕ㄦ繝鍕窗闂佺ǹ瀛╂繛濠囧箚鐏炶В鏋庨柟鎯ь嚟閸橀亶姊洪崫鍕偍闁告柨鐭傞幃姗€鎮╅悽鐢碉紲闂佺粯鐟㈤崑鎾绘煕閵娿儳鍩g€殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌涘☉姗堟敾闁告瑥绻橀弻锝夊箣閿濆棭妫勯梺鍝勵儎缁舵岸寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閹冣挃缂侇噮鍨抽幑銏犫槈閵忕姷顓洪梺鍝勫暊閸嬫捇鏌涢妶鍛ч柡灞剧洴婵$兘顢欓悡搴樻嫽闂備浇妗ㄧ粈浣该洪銏犺摕闁哄浄绱曢悿鈧梺鍝勬川閸婎偊濡烽敂杞扮盎闂佹寧妫侀褍鈻嶅澶嬬厵妞ゆ梻鐡斿▓婊呪偓瑙勬礃椤ㄥ棗顕ラ崟顒傜瘈濞达絽澹婂Λ婊堟⒒閸屾艾鈧绮堟笟鈧獮澶愬灳鐡掍焦妞介弫鍐磼濮樻唻绱卞┑鐘灱閸╂牠宕濋弴銏犲強闁靛鏅滈悡鐔兼煙闁箑鏋涢柛鏂款儔閺屽秹鏌ㄧ€n亞浼岄梺璇″枛缂嶅﹪鐛笟鈧獮鎺楀箣濠垫劗鈧櫕绻濋悽闈涗粶闁瑰啿绻樺畷婵嗏枎閹惧疇鎽曢梺缁樻⒒閸樠呯矆閸曨垱鐓忛柛顐g箖椤ユ粍銇勮箛銉﹀

题目列表(包括答案和解析)

 0  445876  445884  445890  445894  445900  445902  445906  445912  445914  445920  445926  445930  445932  445936  445942  445944  445950  445954  445956  445960  445962  445966  445968  445970  445971  445972  445974  445975  445976  445978  445980  445984  445986  445990  445992  445996  446002  446004  446010  446014  446016  446020  446026  446032  446034  446040  446044  446046  446052  446056  446062  446070  447348 

3、下列说法中,不正确的是(   )

   A、函数的值域中的每个数都有原象

   B、定义域和值域分别相等的两函数是同一函数

   C、定义域和对应法则分别相同的两函数是同一函数

   D、函数的定义域只含一个元素,则值域也只有一个元素

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞剧洴楠炴﹢鎳犻澶嬓滈梻浣规偠閸斿秶鎹㈤崘顔嘉﹂柛鏇ㄥ灠閸愨偓濡炪倖鍔﹀鈧紒顔煎缁辨挻鎷呴幓鎺嶅濠电姰鍨煎▔娑㈩敄閸曨厽宕查柛鈩冪⊕閻撳繘鏌涢锝囩畺闁革絾妞介弻娑㈡晲閸涱喛纭€缂備浇椴哥敮锟犲箖閳哄懏顥堟繛鎴炲笚閻庝即姊绘担鍛婃儓闁活剙銈稿畷浼村冀椤撶姴绁﹂梺纭呮彧缁犳垹绮诲☉銏♀拻闁割偆鍠撻埊鏇熴亜閺傚灝顏慨濠勭帛閹峰懘宕ㄦ繝鍌涙畼濠电儑绲藉ú锕€顪冩禒瀣櫜闁绘劖娼欑欢鐐烘煙闁箑鍔﹂柨鏇炲€归悡鏇㈡煛閸ャ儱濡奸柣蹇曞У娣囧﹪顢曢敐蹇氣偓鍧楁煛鐏炲墽娲撮柍銉畵楠炲鈹戦崶鈺€澹曠紓鍌氬€风粈渚€顢栭崨顖涘床闁圭増婢橀悡姗€鏌熸潏楣冩闁稿﹦鍏橀弻銈囧枈閸楃偛顫梺鍛婃煥閹诧紕鎹㈠☉姘e亾濞戞瑡缂氶柣顓滃€曢湁婵犲﹤绨肩花缁樸亜閺囶亞绋荤紒缁樼箓椤繈顢橀悢鍓蹭户闂傚倷鑳剁划顖涚仚闁诲繐绻戦悷鈺佺暦閹扮増鍊烽柣鎴炃氶幏娲煟鎼粹剝璐″┑顔炬暬婵℃挳宕橀埡鈧换鍡涙煟閹邦厽缍戞繛鎼枟椤ㄣ儵鎮欏顔煎壉濡炪倧濡囨晶妤呭箚閺冨牊鏅查柛銉╊棑鎼村﹪姊婚崒娆掑厡缂侇噮鍨跺畷婵嬫晝閸屾氨顦┑鐐叉閹稿摜绮堟径鎰厪闁割偅绻冮ˉ鎾趁瑰⿰鍕煁闁靛洤瀚伴獮妯兼崉閻╂帇鍨介弻娑樜熼搹瑙勬喖濡炪們鍔婇崕鐢稿箖濞嗘挸绠甸柟鐑樻尰椤斿嫰姊洪崜褏甯涢柣妤冨█瀵鈽夊Ο閿嬵潔闂佸憡顨堥崑鐐烘倶閸喓绠鹃悗鐢登归宀勬煕濞嗗繐鏆欐い顐㈢箻閹煎綊宕烽鐙呯床婵犳鍠楅〃鍛涘▎鎾村仼闁割偅娲橀埛鎴犵磽娴g櫢渚涙繛鍫熸閺屻劑寮撮妸銈夊仐闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺灥婵悂鏌f惔锛勭暛闁稿骸宕灋鐎光偓閸曨偆顔嗗┑鐐叉▕娴滄繈鍩涢幋锔界厱婵炴垶锕崝鐔虹磼閻樿櫕宕岄柟顔筋殔椤繈鎮℃惔锛勭潉闂備浇妗ㄧ粈浣虹矓閻熼偊鍤曟い鏇楀亾鐎规洘甯掗オ浼村椽閸愵亜绨ラ梻鍌氬€风粈渚€骞栭銈嗗仏妞ゆ劧绠戠壕鍧楁煙閹澘袚闁稿鏅滅换娑橆啅椤旇崵鍑归梺缁樻尰缁嬫垿婀侀梺鎸庣箓閹冲繘骞夐幖浣告瀬闁割偅鎯婇弮鍫熷亹闂傚牊绋愮划璺衡攽閻愬弶鈻曢柛娆忓暣婵″瓨绗熼埀顒€顕f禒瀣垫晣闁绘劙娼ч獮鎰版⒒娴e憡鍟為柛鏃€鍨垮畷婵嗩吋婢跺鈧爼鏌涢鐘插姕闁稿﹦鏁婚幃宄扳枎韫囨搩浠剧紓浣插亾闁告劏鏂傛禍婊堟煏婵炲灝鍔甸棅顒夊墯椤ㄣ儵鎮欑拠褑鍚悗娈垮枙缁瑩銆佸鈧幃娆撴濞戞ḿ顔囬梻鍌氬€风粈渚€骞夐敓鐘茬闁硅揪绠戠粈澶愬箹濞n剙濡肩痪鎯х秺閺屻劑鎮ら崒娑橆伓

试题详情

2、下列四组函数中,表示同一函数是(    )

   A、

   B、

   C、

   D、

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞剧洴楠炴﹢鎳犻澶嬓滈梻浣规偠閸斿秶鎹㈤崘顔嘉﹂柛鏇ㄥ灠閸愨偓濡炪倖鍔﹀鈧紒顔煎缁辨挻鎷呴幓鎺嶅濠电姰鍨煎▔娑㈩敄閸曨厽宕查柛鈩冪⊕閻撳繘鏌涢锝囩畺闁革絾妞介弻娑㈡晲閸涱喛纭€缂備浇椴哥敮锟犲箖閳哄懏顥堟繛鎴炲笚閻庝即姊绘担鍛婃儓闁活剙銈稿畷浼村冀椤撶姴绁﹂梺纭呮彧缁犳垹绮诲☉銏♀拻闁割偆鍠撻埊鏇熴亜閺傚灝顏慨濠勭帛閹峰懘宕ㄦ繝鍌涙畼濠电儑绲藉ú锕€顪冩禒瀣櫜闁绘劖娼欑欢鐐烘煙闁箑鍔﹂柨鏇炲€归悡鏇㈡煛閸ャ儱濡奸柣蹇曞У娣囧﹪顢曢敐蹇氣偓鍧楁煛鐏炲墽娲撮柍銉畵楠炲鈹戦崶鈺€澹曠紓鍌氬€风粈渚€顢栭崨顖涘床闁圭増婢橀悡姗€鏌熸潏楣冩闁稿﹦鍏橀弻銈囧枈閸楃偛顫梺鍛婃煥閹诧紕鎹㈠☉姘e亾濞戞瑡缂氶柣顓滃€曢湁婵犲﹤绨肩花缁樸亜閺囶亞绋荤紒缁樼箓椤繈顢橀悢鍓蹭户闂傚倷鑳剁划顖涚仚闁诲繐绻戦悷鈺佺暦閹扮増鍊烽柣鎴炃氶幏娲煟鎼粹剝璐″┑顔炬暬婵℃挳宕橀埡鈧换鍡涙煟閹邦厽缍戞繛鎼枟椤ㄣ儵鎮欏顔煎壉濡炪倧濡囨晶妤呭箚閺冨牊鏅查柛銉╊棑鎼村﹪姊婚崒娆掑厡缂侇噮鍨跺畷婵嬫晝閸屾氨顦┑鐐叉閹稿摜绮堟径鎰厪闁割偅绻冮ˉ鎾趁瑰⿰鍕煁闁靛洤瀚伴獮妯兼崉閻╂帇鍨介弻娑樜熼搹瑙勬喖濡炪們鍔婇崕鐢稿箖濞嗘挸绠甸柟鐑樻尰椤斿嫰姊洪崜褏甯涢柣妤冨█瀵鈽夊Ο閿嬵潔闂佸憡顨堥崑鐐烘倶閸喓绠鹃悗鐢登归宀勬煕濞嗗繐鏆欐い顐㈢箻閹煎綊宕烽鐙呯床婵犳鍠楅〃鍛涘▎鎾村仼闁割偅娲橀埛鎴犵磽娴g櫢渚涙繛鍫熸閺屻劑寮撮妸銈夊仐闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺灥婵悂鏌f惔锛勭暛闁稿骸宕灋鐎光偓閸曨偆顔嗗┑鐐叉▕娴滄繈鍩涢幋锔界厱婵炴垶锕崝鐔虹磼閻樿櫕宕岄柟顔筋殔椤繈鎮℃惔锛勭潉闂備浇妗ㄧ粈浣虹矓閻熼偊鍤曟い鏇楀亾鐎规洘甯掗オ浼村椽閸愵亜绨ラ梻鍌氬€风粈渚€骞栭銈嗗仏妞ゆ劧绠戠壕鍧楁煙閹澘袚闁稿鏅滅换娑橆啅椤旇崵鍑归梺缁樻尰缁嬫垿婀侀梺鎸庣箓閹冲繘骞夐幖浣告瀬闁割偅鎯婇弮鍫熷亹闂傚牊绋愮划璺衡攽閻愬弶鈻曢柛娆忓暣婵″瓨绗熼埀顒€顕f禒瀣垫晣闁绘劙娼ч獮鎰版⒒娴e憡鍟為柛鏃€鍨垮畷婵嗩吋婢跺鈧爼鏌涢鐘插姕闁稿﹦鏁婚幃宄扳枎韫囨搩浠剧紓浣插亾闁告劏鏂傛禍婊堟煏婵炲灝鍔甸棅顒夊墯椤ㄣ儵鎮欑拠褑鍚悗娈垮枙缁瑩銆佸鈧幃娆撴濞戞ḿ顔囬梻鍌氬€风粈渚€骞夐敓鐘茬闁硅揪绠戠粈澶愬箹濞n剙濡肩痪鎯х秺閺屻劑鎮ら崒娑橆伓

试题详情

                     A组

1、已知,则f[f(-1)] 的值等于(    )

   A、2    B、3    C、4    D、5

试题详情

4、评价:检验与评价结果是否符合实际。

例9.已知f(x+1)=x2-3x+2,

  (1)求f(x);

  (2)求f(x-a)+f(x+a)

[探路]换元法:用凑法换元或设法换元。

[解法一]

  (1)改写已知等式,并且凑法:

    f(t+1)=t2-3t+2=(t+1)2-5t+1=(t+1)2-5(t+1)+6,

    ∴f(x)=x2-5x+6

  (2)f(x-a)+f(x+a)=(x-a)2-5(x-a)+6+(x+a)2-5(x+a)+6

               =2x2-10x+2a2+12

[解法二]

   (1)把已知等式改写为

            f(t+1)=t2-3t+2

        设 t+1=x,则t=x-1

    f(x)=(x-1)2-3(x-1)+2=x2-5x+6

    即f(x)=x2-5x+6

   (2)同“解法一”

[评注]

   解法一是“凑法”,解法二是“设法”,它们都是换元法。选用哪个方法要由题目的条件来确定,

   如本题解法二较好。但下面的例2用解法二(设法)却是不好的。

例10.已知,求f(x)和f(-3)。

[探路]

   用凑法换元。

[解]把已知式先改写,并用凑法:

   

   ∴

   ∴f(-3)=-3(9-3)=-18

[评注]

   本题用“设法”,即“设,解出t”是不好的,请你试试看。

例11.求下列函数的定义域:

   (1);  (2)

[解](1)

    ∴函数的定义域是(-∞,-3)∪(-3,-1] ∪[4,+∞)。

    (2)

      ∴函数的定义域是(-2,2)∪(2,+∞)

[评注]

   在(1)中,解|x+1|-2≠0得x≠1 , x≠-3,如果写成“x≠1,x≠-3”,这是错误的;应写成

   “x≠1,x≠3”。这是一个重要的逻辑思维问题,不要用错逻辑联结词“或”、“且”。写出

   上面的x{1,-3}是最好的。

   在(2)中,解时,先解方程,经检验x=-1是增根,应舍去。

   所以得x≠2。

   求定义域最关键问题是列出自变量可取值的充要条件组。在解析式上,目前应记准列条件组的下述

   法则:

   有分式--分母非零;

   有偶次根式--被开方式非负;

   有零指数幂--底非零。

例12.(1)已知y=f(x)的定义域是[-1,2],求函数y=f(x+1)-f(x-1)的定义域。

    (2)已知y=f(1-2x)的定义域是[-1,2],求函数y=f(x)的定义域。

[探路]

   利用函数的符号意义来求其自变量的取值范围。先改写已知定义域的函数的自变量。

[解]

   (1)∵f(t)的定义域是[-1,2],

     ∴-1≤t≤2。

    对于函数y=f(x+1)-f(x-1)使f(t)有意义,应有

    

   ∴函数y=f(x+1)-f(x-1)的定义域是[0,1]。

   (2)∵f(1-2t)的定义域是[-1,2]

     ∴-1≤t≤2

     ∴-3≤1-2t≤3

      对于函数f(x)的自变量x=1-2t∈[-3,3]

   ∴函数y=f(x)的定义域是[-3,3]

[评注]

   本题就是“抽象问题”,求抽象函数的定义域要由函数符号的意义来确定,其关键是抓住“谁是自

   变量”,求定义域就是求自变量的取值范围。以本题之(2)为例:首先要弄清f(1-2x)和f(x)是两个

   不同的函数;因为它们的自变量都表示为x,为了防止混淆,把已知函数f(1-2x)改写为f(1-2t),这

   样函数f(1-2t)的自变量为t∈[-1,2].所求函数f(x)的自变量为x,再由x=1-2t , t∈[-1 , 2],求

   得x∈[-3,3],即得f(x)的定义域。函数y=f(1-2t)是函数y=f(x)和函数x=1-2t的“复合”。中学

   所遇到的“抽象函数问题”就是这种复合函数的符号问题。

例13.求函数的值域。

[探路]用“不等式法”或“反解法”。

[解法一]用“不等式法”:

   

   由x≠3得≠0(即)

   ∴y≠2,即得函数y的值域:{y|y∈R,且y≠2}。

[解法二]用“反解法”,即“解x法”:

   

         ①

     关于自变量x的方程①有x≠3的解y≠2,

     ∴函数y的值域是{y|y∈R,且y≠2}

[评注]

   “不等式法”,已在前面说过,通过本例加以熟练。

   “反解法”就是把函数y=f(x) , x∈A(A是定义域)等价地化为关于自变量x的方程,求值域就是求

该方程在定义域上有解的充要条件。但不必求出x,只要用各种方法消去x,用y表出这个充要条件,即可

解得值域。当这个充要条件可用判别式表出,那么,这种“反解法”就叫做“判别式法”。当这个充要条

件不能用判别式表出,即是判别式法失效!

例14.求函数的值域。

[探路]用“判别式法”

[解]该函数的定义域A=R

   

                  ①

  (1)当y=0时,①x=0∈A(定义域),∴有y=0 

  (2)当y≠0时,①有实数解△=1-4y2≥0(y≠0)

     Û

    由(1)和(2),得函数值域为[]。

[评注]

   判别式法应用在二次方程中,所以应注意讨论方程①是否为二次方程,因此本题要分类讨论。

   本题“判别式法”有效,是因为二次方程①的根x∈R,没有限制。对于根x有限制的二次方程,△≥0

只是有实数根的必要条件,还要补加其它条件,使之成为充要条件才能求得值域,否则,要改用其他方法。

例15.求函数的值域。

[探路]用换元法,设,则x可用t的有理式表示,从而化为二次函数的值域问题。

[解]设,则t∈[0,+∞),x=1+t2

    ∴

    ∴

    ∴函数的值域是[)。

[评注]

   用换元法,必须注意:不但解析式要完全化为新元的函数,而且要求出新元的取值范围(新函数的定

   义域),即建立完整的新函数。如本例的新函数是,t∈[0,+∞],否则,换元不等

   价,容易造成错误。

例16.x为何值时,|x-1|+|x-2|+|x-3|+|x-5|的值最小?并求出这个最小值。

[探路]

   显然,这是求函数。

    f(x)=|x-1|+|x-2|+|x-3|+|x-5|

   的值域问题。用分类法(零点划分)是可以解决的,但要分为五种情况(分段函数),太麻烦了,

   于是想用图象法来解,试试看,能不能非常简单,还有没有更妙的解法?

[解法一]

   (图象法)这个函数的图象是折线,其最小值必在折点上取得,于是计算四个折点的函数值:

   f(1)=7 , f(2)=5 , f(3)=5 , f(5)=9

   ∴f(x)的最小值为5,当x∈[2,3]时取得。

[解法三](利用绝对值的几何意义)画数轴:

   

   设动点P的坐标为x,A、B、C、D的坐标分别为1、2、3、5,则f(x)=|x-1|+|x-2|+|x-3|+|x-5|

                             =|PA|+|PB|+|PC|+|PD|=d

   由图可知,当点P在线段BC上时,取得d0=|BC|+|AD|=1+4=5;当点P在线段BC的两侧延长线上时d>d0

   ∴当x∈[2,3]时,取得f(x)min=5。

[评注]解法一是图象法,但无需画图,其图象是开口向上的折线,在解题者的想象之中。

    解法二是“图解法”--画数学式的几何图,图解法包括图象法。由本题,我们看到图解法包括:

   (1)图象法;(2)图示法--画几何图或示意图

       图解法是数形结合法。

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞剧洴楠炴﹢鎳犻澶嬓滈梻浣规偠閸斿秶鎹㈤崘顔嘉﹂柛鏇ㄥ灠閸愨偓濡炪倖鍔﹀鈧紒顔煎缁辨挻鎷呴幓鎺嶅濠电姰鍨煎▔娑㈩敄閸曨厽宕查柛鈩冪⊕閻撳繘鏌涢锝囩畺闁革絾妞介弻娑㈡晲閸涱喛纭€缂備浇椴哥敮锟犲箖閳哄懏顥堟繛鎴炲笚閻庝即姊绘担鍛婃儓闁活剙銈稿畷浼村冀椤撶姴绁﹂梺纭呮彧缁犳垹绮诲☉銏♀拻闁割偆鍠撻埊鏇熴亜閺傚灝顏慨濠勭帛閹峰懘宕ㄦ繝鍌涙畼濠电儑绲藉ú锕€顪冩禒瀣櫜闁绘劖娼欑欢鐐烘煙闁箑鍔﹂柨鏇炲€归悡鏇㈡煛閸ャ儱濡奸柣蹇曞У娣囧﹪顢曢敐蹇氣偓鍧楁煛鐏炲墽娲撮柍銉畵楠炲鈹戦崶鈺€澹曠紓鍌氬€风粈渚€顢栭崨顖涘床闁圭増婢橀悡姗€鏌熸潏楣冩闁稿﹦鍏橀弻銈囧枈閸楃偛顫梺鍛婃煥閹诧紕鎹㈠☉姘e亾濞戞瑡缂氶柣顓滃€曢湁婵犲﹤绨肩花缁樸亜閺囶亞绋荤紒缁樼箓椤繈顢橀悢鍓蹭户闂傚倷鑳剁划顖涚仚闁诲繐绻戦悷鈺佺暦閹扮増鍊烽柣鎴炃氶幏娲煟鎼粹剝璐″┑顔炬暬婵℃挳宕橀埡鈧换鍡涙煟閹邦厽缍戞繛鎼枟椤ㄣ儵鎮欏顔煎壉濡炪倧濡囨晶妤呭箚閺冨牊鏅查柛銉╊棑鎼村﹪姊婚崒娆掑厡缂侇噮鍨跺畷婵嬫晝閸屾氨顦┑鐐叉閹稿摜绮堟径鎰厪闁割偅绻冮ˉ鎾趁瑰⿰鍕煁闁靛洤瀚伴獮妯兼崉閻╂帇鍨介弻娑樜熼搹瑙勬喖濡炪們鍔婇崕鐢稿箖濞嗘挸绠甸柟鐑樻尰椤斿嫰姊洪崜褏甯涢柣妤冨█瀵鈽夊Ο閿嬵潔闂佸憡顨堥崑鐐烘倶閸喓绠鹃悗鐢登归宀勬煕濞嗗繐鏆欐い顐㈢箻閹煎綊宕烽鐙呯床婵犳鍠楅〃鍛涘▎鎾村仼闁割偅娲橀埛鎴犵磽娴g櫢渚涙繛鍫熸閺屻劑寮撮妸銈夊仐闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺灥婵悂鏌f惔锛勭暛闁稿骸宕灋鐎光偓閸曨偆顔嗗┑鐐叉▕娴滄繈鍩涢幋锔界厱婵炴垶锕崝鐔虹磼閻樿櫕宕岄柟顔筋殔椤繈鎮℃惔锛勭潉闂備浇妗ㄧ粈浣虹矓閻熼偊鍤曟い鏇楀亾鐎规洘甯掗オ浼村椽閸愵亜绨ラ梻鍌氬€风粈渚€骞栭銈嗗仏妞ゆ劧绠戠壕鍧楁煙閹澘袚闁稿鏅滅换娑橆啅椤旇崵鍑归梺缁樻尰缁嬫垿婀侀梺鎸庣箓閹冲繘骞夐幖浣告瀬闁割偅鎯婇弮鍫熷亹闂傚牊绋愮划璺衡攽閻愬弶鈻曢柛娆忓暣婵″瓨绗熼埀顒€顕f禒瀣垫晣闁绘劙娼ч獮鎰版⒒娴e憡鍟為柛鏃€鍨垮畷婵嗩吋婢跺鈧爼鏌涢鐘插姕闁稿﹦鏁婚幃宄扳枎韫囨搩浠剧紓浣插亾闁告劏鏂傛禍婊堟煏婵炲灝鍔甸棅顒夊墯椤ㄣ儵鎮欑拠褑鍚悗娈垮枙缁瑩銆佸鈧幃娆撴濞戞ḿ顔囬梻鍌氬€风粈渚€骞夐敓鐘茬闁硅揪绠戠粈澶愬箹濞n剙濡肩痪鎯х秺閺屻劑鎮ら崒娑橆伓

试题详情

3、求解;

试题详情

2、建立目标函数,如本例目标函数是求最值的矩形面积;

试题详情

例1:下列对应是不是从A到B的映射?是不是函数?

   (1)A=(-∞,+∞),B=(0,+∞),  f∶x→y=|x|

   (2)A={x|x≥0}, B=R, f∶x→y, y2=x.

   (3)A={x|x≥2, x∈Z}, B={y|y≥0, y∈Z}, f∶x→y=x2-2x+2.

   (4)A={平面α内的矩形},B={平面α内的圆},f∶作矩形的外接圆。

[探路] 

   按映射的特点:A中每一元素都有象,且象唯一来判别;按函数的特点;A、B都是非空数集的映射来

   判别。

[解]

   (1)不是映射,因为0∈A,但|0|=0∈B,当然,(1)更不是函数。

   (2)不是映射,更不是函数。因为,当x>0时,元素x的象不唯一。

   (3)是映射。因为,又当x∈A时,y∈Z,所以(3)是映射。又因为A、B都是数集,

     所以(3)也是函数。

   (4)是映射。因为每一个矩形都有唯一的外接圆,即A中每一元素在B中都有唯一的象,所以

    (4)是映射。但A、B不是数集,所以不是函数。

例2:已知映射f∶A→B,其中,集合A={-3,-2,-1,1,2,3,4},集合B的元素都是A中元素在映射f下

   的象,且对任意的a∈A,在B中和它对应的元素是|a|,则集合B中元素的个数是(    )

   A、4    B、5    C、6    D、7

[探路]该映射是函数,问题化为求函数的值域。

[解]已知映射f∶A→B是函数

     f(x)=|x|,定义域A={-3,-2,-1,1,2,3,4},且B是值域,求值域,得

    B={3,2,1,4},其元素的个数是4,因此,选A。

[评注]

   用映射的概念来深刻理解函数,反之,用函数的方法来解映射的问题,这是把概念与操作相结合的现

   代观点,在本例,用具体的函数来操作映射是最快的算法,而不在概念中兜圈子。

例3:已知函数

   求f[f(1)]和f[f(-1)]的值。

[探路]分段计算。

[解]∵

    ∴

    ∵

    ∴

例4:下列哪组函数是同一函数?为什么?

   ①

   ②

   ③

   ④

[解]

   ①是同一函数,因为对应法则等价:

   ②不是同一函数,因为定义域不相等:前一函数的定义域是[1,+∞]后一函数的定义域是

   

   ③不是同一函数,因为定义域不相等:前一函数的定义域是[0,+∞);后一函数的定义域是

   (-∞,+∞)。本题也可按值域不相等直接看出。

   ④不是同一函数。因为定义域不相等:前一函数的定义域为R;后一函数定义

    域为

例5:作出函数的图象。

[探路]

   先把函数化为分段函数,再画图

[解]已知函数化为

  

   其图象如图2。

[评注]

   这类函数的图象是折线,因此,还有画图快法:先求折点,即各绝对值等于零的点,如本题折点有

   两个:(-1,6)、(2,3);再求一两个适当点画两边的射线,连折点间的线段,即成图。

例6:设集合A={a1,a2,a3},B={b1,b2},

   (1)从A到B的映射有多少个?

   (2)从B到A的映射有多少个?

[探路]

   根据“什么叫映射”来做一个映射:先算每一元素的象有几种可能,然后就能算出共能做出多少个不

   同的映射。

[解]

   (1)作a1的象有b1或b22种方法,同样作a2,a3的象也各有2种方法,所以从A到B的映射,

     共有2×2×2=8个。

   (2)从B到A的映射共有3×3=9个。

例7:《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,

   超过800元的部分为全月应纳税所得额。此项税款按下表分段累进计算。

全月应纳税所得额
税率
不超过500元的部分
5%
超过500元至2000元的部分
10%
超过2000元至5000元的部分
15%
 
 

   (1)某人今年十月份工薪为4000元,问他应纳税多少元?

   (2)某人去年十月份纳税26.78元,问他去年十月份的工薪为多少元?

[探路]利用分段函数进行计算。

[解](1)该人全月纳税所得额为

     4000元-800元=3200元

     他应纳税:500元×5%+1500元×10%+1200元×15%=355元。

     (2)工薪1300元应纳税:500元×5%=25元;

         工薪2800元应纳税:25元+1500元×10%=175元。

        ∵26.78∈(25,175),

      ∴他去年十月份的工薪为1300元+(26.78-25)元×元。

例8:将长为l厘米的铁丝折成矩形,问怎样折才能使矩形的面积最大?并求出这个最大面积。

[探路]选取自变量,建立面积函数,注意定义域,求出值域,便得最大值。

[解]设折成的矩形的一边长为xcm,面积为Scm2

   则 

   当时,取得

   ∴将铁丝折成边长为的正方形时,面积最大,最大面积为

[评注]这种解决应用问题的方法叫“目标函数法”,其步骤是:

1、选取自变量,并确定定义域;

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞剧洴楠炴﹢鎳犻澶嬓滈梻浣规偠閸斿秶鎹㈤崘顔嘉﹂柛鏇ㄥ灠閸愨偓濡炪倖鍔﹀鈧紒顔煎缁辨挻鎷呴幓鎺嶅濠电姰鍨煎▔娑㈩敄閸曨厽宕查柛鈩冪⊕閻撳繘鏌涢锝囩畺闁革絾妞介弻娑㈡晲閸涱喛纭€缂備浇椴哥敮锟犲箖閳哄懏顥堟繛鎴炲笚閻庝即姊绘担鍛婃儓闁活剙銈稿畷浼村冀椤撶姴绁﹂梺纭呮彧缁犳垹绮诲☉銏♀拻闁割偆鍠撻埊鏇熴亜閺傚灝顏慨濠勭帛閹峰懘宕ㄦ繝鍌涙畼濠电儑绲藉ú锕€顪冩禒瀣櫜闁绘劖娼欑欢鐐烘煙闁箑鍔﹂柨鏇炲€归悡鏇㈡煛閸ャ儱濡奸柣蹇曞У娣囧﹪顢曢敐蹇氣偓鍧楁煛鐏炲墽娲撮柍銉畵楠炲鈹戦崶鈺€澹曠紓鍌氬€风粈渚€顢栭崨顖涘床闁圭増婢橀悡姗€鏌熸潏楣冩闁稿﹦鍏橀弻銈囧枈閸楃偛顫梺鍛婃煥閹诧紕鎹㈠☉姘e亾濞戞瑡缂氶柣顓滃€曢湁婵犲﹤绨肩花缁樸亜閺囶亞绋荤紒缁樼箓椤繈顢橀悢鍓蹭户闂傚倷鑳剁划顖涚仚闁诲繐绻戦悷鈺佺暦閹扮増鍊烽柣鎴炃氶幏娲煟鎼粹剝璐″┑顔炬暬婵℃挳宕橀埡鈧换鍡涙煟閹邦厽缍戞繛鎼枟椤ㄣ儵鎮欏顔煎壉濡炪倧濡囨晶妤呭箚閺冨牊鏅查柛銉╊棑鎼村﹪姊婚崒娆掑厡缂侇噮鍨跺畷婵嬫晝閸屾氨顦┑鐐叉閹稿摜绮堟径鎰厪闁割偅绻冮ˉ鎾趁瑰⿰鍕煁闁靛洤瀚伴獮妯兼崉閻╂帇鍨介弻娑樜熼搹瑙勬喖濡炪們鍔婇崕鐢稿箖濞嗘挸绠甸柟鐑樻尰椤斿嫰姊洪崜褏甯涢柣妤冨█瀵鈽夊Ο閿嬵潔闂佸憡顨堥崑鐐烘倶閸喓绠鹃悗鐢登归宀勬煕濞嗗繐鏆欐い顐㈢箻閹煎綊宕烽鐙呯床婵犳鍠楅〃鍛涘▎鎾村仼闁割偅娲橀埛鎴犵磽娴g櫢渚涙繛鍫熸閺屻劑寮撮妸銈夊仐闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺灥婵悂鏌f惔锛勭暛闁稿骸宕灋鐎光偓閸曨偆顔嗗┑鐐叉▕娴滄繈鍩涢幋锔界厱婵炴垶锕崝鐔虹磼閻樿櫕宕岄柟顔筋殔椤繈鎮℃惔锛勭潉闂備浇妗ㄧ粈浣虹矓閻熼偊鍤曟い鏇楀亾鐎规洘甯掗オ浼村椽閸愵亜绨ラ梻鍌氬€风粈渚€骞栭銈嗗仏妞ゆ劧绠戠壕鍧楁煙閹澘袚闁稿鏅滅换娑橆啅椤旇崵鍑归梺缁樻尰缁嬫垿婀侀梺鎸庣箓閹冲繘骞夐幖浣告瀬闁割偅鎯婇弮鍫熷亹闂傚牊绋愮划璺衡攽閻愬弶鈻曢柛娆忓暣婵″瓨绗熼埀顒€顕f禒瀣垫晣闁绘劙娼ч獮鎰版⒒娴e憡鍟為柛鏃€鍨垮畷婵嗩吋婢跺鈧爼鏌涢鐘插姕闁稿﹦鏁婚幃宄扳枎韫囨搩浠剧紓浣插亾闁告劏鏂傛禍婊堟煏婵炲灝鍔甸棅顒夊墯椤ㄣ儵鎮欑拠褑鍚悗娈垮枙缁瑩銆佸鈧幃娆撴濞戞ḿ顔囬梻鍌氬€风粈渚€骞夐敓鐘茬闁硅揪绠戠粈澶愬箹濞n剙濡肩痪鎯х秺閺屻劑鎮ら崒娑橆伓

试题详情

5.图象法。

[评注]

   函数的定义域和对应法则确定以后,值域就被完全确定,然而求出值域却是一个相当复杂的问题,没

   有包求所有函数值域的万能方法,只能靠自己不断地总结和发现它。今后,随着学习数学知识的丰富,

   解题也积累了经验,你将学会许多求值域的方法,但要注意总结和掌握最基本的通法。我们暂时学会

   上面的五个方法,并且只能采取“例中学”的方法。由于例题较多,暂不列举,请在下面的《B级》

   中学习求值域的范例。

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞剧洴楠炴﹢鎳犻澶嬓滈梻浣规偠閸斿秶鎹㈤崘顔嘉﹂柛鏇ㄥ灠閸愨偓濡炪倖鍔﹀鈧紒顔煎缁辨挻鎷呴幓鎺嶅濠电姰鍨煎▔娑㈩敄閸曨厽宕查柛鈩冪⊕閻撳繘鏌涢锝囩畺闁革絾妞介弻娑㈡晲閸涱喛纭€缂備浇椴哥敮锟犲箖閳哄懏顥堟繛鎴炲笚閻庝即姊绘担鍛婃儓闁活剙銈稿畷浼村冀椤撶姴绁﹂梺纭呮彧缁犳垹绮诲☉銏♀拻闁割偆鍠撻埊鏇熴亜閺傚灝顏慨濠勭帛閹峰懘宕ㄦ繝鍌涙畼濠电儑绲藉ú锕€顪冩禒瀣櫜闁绘劖娼欑欢鐐烘煙闁箑鍔﹂柨鏇炲€归悡鏇㈡煛閸ャ儱濡奸柣蹇曞У娣囧﹪顢曢敐蹇氣偓鍧楁煛鐏炲墽娲撮柍銉畵楠炲鈹戦崶鈺€澹曠紓鍌氬€风粈渚€顢栭崨顖涘床闁圭増婢橀悡姗€鏌熸潏楣冩闁稿﹦鍏橀弻銈囧枈閸楃偛顫梺鍛婃煥閹诧紕鎹㈠☉姘e亾濞戞瑡缂氶柣顓滃€曢湁婵犲﹤绨肩花缁樸亜閺囶亞绋荤紒缁樼箓椤繈顢橀悢鍓蹭户闂傚倷鑳剁划顖涚仚闁诲繐绻戦悷鈺佺暦閹扮増鍊烽柣鎴炃氶幏娲煟鎼粹剝璐″┑顔炬暬婵℃挳宕橀埡鈧换鍡涙煟閹邦厽缍戞繛鎼枟椤ㄣ儵鎮欏顔煎壉濡炪倧濡囨晶妤呭箚閺冨牊鏅查柛銉╊棑鎼村﹪姊婚崒娆掑厡缂侇噮鍨跺畷婵嬫晝閸屾氨顦┑鐐叉閹稿摜绮堟径鎰厪闁割偅绻冮ˉ鎾趁瑰⿰鍕煁闁靛洤瀚伴獮妯兼崉閻╂帇鍨介弻娑樜熼搹瑙勬喖濡炪們鍔婇崕鐢稿箖濞嗘挸绠甸柟鐑樻尰椤斿嫰姊洪崜褏甯涢柣妤冨█瀵鈽夊Ο閿嬵潔闂佸憡顨堥崑鐐烘倶閸喓绠鹃悗鐢登归宀勬煕濞嗗繐鏆欐い顐㈢箻閹煎綊宕烽鐙呯床婵犳鍠楅〃鍛涘▎鎾村仼闁割偅娲橀埛鎴犵磽娴g櫢渚涙繛鍫熸閺屻劑寮撮妸銈夊仐闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺灥婵悂鏌f惔锛勭暛闁稿骸宕灋鐎光偓閸曨偆顔嗗┑鐐叉▕娴滄繈鍩涢幋锔界厱婵炴垶锕崝鐔虹磼閻樿櫕宕岄柟顔筋殔椤繈鎮℃惔锛勭潉闂備浇妗ㄧ粈浣虹矓閻熼偊鍤曟い鏇楀亾鐎规洘甯掗オ浼村椽閸愵亜绨ラ梻鍌氬€风粈渚€骞栭銈嗗仏妞ゆ劧绠戠壕鍧楁煙閹澘袚闁稿鏅滅换娑橆啅椤旇崵鍑归梺缁樻尰缁嬫垿婀侀梺鎸庣箓閹冲繘骞夐幖浣告瀬闁割偅鎯婇弮鍫熷亹闂傚牊绋愮划璺衡攽閻愬弶鈻曢柛娆忓暣婵″瓨绗熼埀顒€顕f禒瀣垫晣闁绘劙娼ч獮鎰版⒒娴e憡鍟為柛鏃€鍨垮畷婵嗩吋婢跺鈧爼鏌涢鐘插姕闁稿﹦鏁婚幃宄扳枎韫囨搩浠剧紓浣插亾闁告劏鏂傛禍婊堟煏婵炲灝鍔甸棅顒夊墯椤ㄣ儵鎮欑拠褑鍚悗娈垮枙缁瑩銆佸鈧幃娆撴濞戞ḿ顔囬梻鍌氬€风粈渚€骞夐敓鐘茬闁硅揪绠戠粈澶愬箹濞n剙濡肩痪鎯х秺閺屻劑鎮ら崒娑橆伓

试题详情

4.反解法、判别式法。

试题详情

3.换元法、配方法。

试题详情


同步练习册答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞诲€濆畷顐﹀Ψ閿旇姤鐦庡┑鐐差嚟婵敻鎳濇ィ鍐ㄧ厴闁瑰鍋涚粻鐘绘⒑缁嬪尅鏀绘い銊ユ楠炲牓濡歌閸嬫捇妫冨☉娆忔殘閻庤娲栧鍫曞箞閵娿儺娓婚悹鍥紦婢规洟姊绘担铏瑰笡濞撴碍顨婂畷鏉库槈濮樺彉绗夊┑鐐村灦鑿ゆ俊鎻掔墛缁绘盯宕卞Ο鍝勵潔濡炪倕绻掗崰鏍ь潖缂佹ɑ濯撮柤鎭掑劤閵嗗﹪姊洪棃鈺冪Ф缂佺姵鎹囬悰顔跨疀濞戞瑦娅㈤梺璺ㄥ櫐閹凤拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欑粈鍐┿亜閺囧棗娲ら悡姗€鏌熸潏楣冩闁稿鍔欓弻娑樷枎韫囷絾效闂佽鍠楅悷褏妲愰幘瀛樺闁告繂瀚烽埀顒€鐭傞弻娑㈠Ω閵壯冪厽閻庢鍠栭…閿嬩繆閹间礁鐓涢柛灞剧煯缁ㄤ粙姊绘担鍛靛綊寮甸鍌滅煓闁硅揪瀵岄弫鍌炴煥閻曞倹瀚�