题目列表(包括答案和解析)
2.双曲线的离心率为
A.2 B.3 C. D.
1.设集合A={|} ,B={| },则A∩B=
A.(-2,2) B.(-3,2) C.(-3,-2) D.(2,3)
21、已知f(x)在(-1,1)上有定义,f()=-1,且满足x,y∈(-1,1)有f(x)+f(y)=f()
⑴证明:f(x)在(-1,1)上为奇函数;
⑵对数列x1=,xn+1=,求f(xn);
⑶求证
(Ⅰ)证明:令x=y=0,∴2f(0)=f(0),∴f(0)=0
令y=-x,则f(x)+f(-x)=f(0)=0
∴f(x)+f(-x)=0 ∴f(-x)=-f(x)
∴f(x)为奇函数 4分
(Ⅱ)解:f(x1)=f()=-1,f(xn+1)=f()=f()=f(xn)+f(xn)=2f(xn)
∴=2即{f(xn)}是以-1为首项,2为公比的等比数列
∴f(xn)=-2n-1
(Ⅲ)解:
而
∴
20、(本小题满分12分)
已知函数 ,且函数与的图像关于直线对称,又 , .
(Ⅰ) 求的值域;
(Ⅱ) 是否存在实数m,使得命题 和 满足复合命题 为真命题?若存在,求出m的取值范围;若不存在,说明理由.
解:(Ⅰ)依题意互为反函数,由得
,得
……………………3分
故在上是减函数
即 的值域为 . ……………………6分
(Ⅱ)由(Ⅰ)知是 上的减函数,是上的减函数,
又
……………………9分
故 解得
因此,存在实数m,使得命题 为真命题,且m的取值范围为. ……………………12分
19、(本小题满分14分)
已知函数,
①当时,求函数的最小值。
②若对任意,>恒成立,试求实数的取值范围。
(1)当有最小值为。…….7分
(2)当,使函数恒成立时,故。。。。14分
18、本小题满分13分)
某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)
[解析]设楼房每平方米的平均综合费为f(x)元,则
= 560+2720=200
当且仅当, 即 时取等号,,
所以满足条件
因此 当时,f(x)取最小值;
答:为了楼房每平方米的平均综合费最少,该楼房应建为15层
17、已知f(x)=2x-1的反函数为(x),g(x)=log4(3x+1).
⑴若f-1(x)≤g(x),求x的取值范围D;
⑵设函数H(x)=g(x)-(x),当x∈D时,求函数H(x)的值域.
解:(Ⅰ)∵
∴ (x>-1)
由≤g(x) ∴
解得0≤x≤1 ∴D=[0,1]
(Ⅱ)H(x)=g(x)-
∵0≤x≤1 ∴1≤3-≤2
∴0≤H(x)≤ ∴H(x)的值域为[0,]
16、(本小题满分12分) 解不等式
解:①当
原式变形为 …………4分
∴x<-2或x>1 ………………6分
②当时
原式变形为 …………8分
∴0<x<1 …………10分
综上知:原不等式解集为 …………12分
15、关于函数有下列命题:
①函数的图象关于轴对称;
②在区间上,函数是减函数;
③函数的最小值为;
④在区间上,函数是增函数.
其中正确命题序号为_______________.(1) (3) (4)
14、13.函数的单调递减区间是________________________.(2,+∞)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com