题目列表(包括答案和解析)
2.已知数列{an}是等差数列,且a3+a11=50,又a4=13,则a2等于
A.1 B.4 C.5 D.6
1.若全焦U={1,2,3,4},A={1,2,3},B={2,3},则CU(A∩B)为
A.{1,4} B.{2,3} C.{1,2,3} D.{4}
21、(本题满分14分)
已知函数与函数的图像关于直线对称.
(1)试用含的代数式表示函数的解析式,并指出它的定义域;
(2)数列中,,当时,.数列中,,.点在函数的图像上,求的值;
(3)在(2)的条件下,过点作倾斜角为的直线,则在y轴上的截距为,求数列的通项公式.
20、(本题满分13分)
已知a为实数,函数f(x)=(x2+)(x+a)
(1)若函数f(x)的图象上有与x轴平行的切线,求a的取值范围;
(2)若f'(-1)=0,(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若对任意的x1,x2∈[-1,0],不等式f(x1)-f(x2)≤m恒成立,试求m的最小值。
19、(本题满分12分)
在平面直角坐标系中,已知A1(-3,0),A2(3,0),P(x,y),M(,0),若实数λ使向量,λ,满足λ2·()2=·。
(1)求点P的轨迹方程,并判断P点的轨迹是怎样的曲线;
(2)当λ=时,过点A1且斜率为1的直线与此时(1)中的曲线相交的另一点为B,能否在直线x=-9上找一点C,使ΔA1BC为正三角形(请说明理由)。
18、(本题满分12分)
如图①在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E,F,G分别是线段PC、PD,BC的中点,现将ΔPDC折起,使平面PDC⊥平面ABCD(如图②)
(1)求证AP∥平面EFG;
(2)求二面角G-EF-D的大小;
(3)在线段PB上确定一点Q,使PC⊥平面ADQ,试给出证明。
17、(本题满分12分)
四个纪念币A、B、C、D,投掷时正面向上的概率如下表所示(0<a<1)
纪念币 |
A |
B |
C |
D |
概率 |
1/2 |
1/2 |
a |
a |
这四个纪念币同时投掷一次,设ξ表示出正面向上的个数。
(1)求概率p(ξ)
(2)求在概率p(ξ),p(ξ=2)为最大时,a的取值范围。
16、(本题满分12分)
已知函数f(x)= +2sin2x
(1)求函数f(x)的最大值及此时x的值;
(2)求函数f(x)的单调递减区间。
15、若RtΔABC中两直角边为a、b,斜边c上的高为h,则,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=,N=,那么M、N的大小关系是 。
14、三个好朋友同时考进同一所高中,该校高一有10个班,则至少有2人分在同一班的概率为 。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com