题目列表(包括答案和解析)

 0  446200  446208  446214  446218  446224  446226  446230  446236  446238  446244  446250  446254  446256  446260  446266  446268  446274  446278  446280  446284  446286  446290  446292  446294  446295  446296  446298  446299  446300  446302  446304  446308  446310  446314  446316  446320  446326  446328  446334  446338  446340  446344  446350  446356  446358  446364  446368  446370  446376  446380  446386  446394  447348 

(17)(本小题满分12分)

解关于x的不等式:().

(18)(本小题满分12分)

已知正项数列的前n项和,求的通项公式.

(19)(本小题满分12分)

已知,直线l1ykxl2y=-kx.

(Ⅰ)证明:到l1l2的距离的平方和为定值a(a>0)的点的轨迹是圆或椭圆

(Ⅱ)求到l1l2的距离之和为定值c(c>0)的点的轨迹.

(20)(本小题满分12分)

已知三棱柱ABCA1B1C1中,底面边长和侧棱长均为a,侧面A1ACC1⊥底面ABCA1Ba

(Ⅰ)求异面直线ACBC1所成角的余弦值;

(Ⅱ)求证:A1B⊥面AB1C.

(21)(本小题满分12分)

已知盒中有10个灯泡,其中8个正品,2个次品.现需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止.设ξ为取出的次品,求ξ的分布列及Eξ.

(22)(本小题满分14分) 

已知抛物线C,过C上一点M,且与M处的切线垂直的直线称为C在点M的法线.

(Ⅰ)若C在点M的法线的斜率为-,求点M的坐标(x0y0);

(Ⅱ)设P(-2,a)为C对称轴上的一点,在C上是否存在点,使得C在该点的法线通过点P?若有,求出这些点,以及C在这些点的法线方程;若没有,请说明理由.

试题详情

(13)抛物线的准线方程为      .

(14)在5名学生(3名男生,2名女生)中安排2名学生值日,其中至少有1名女生的概率是      .

(15)函数()的最大值为     .

(16)若的展开式中常数项为-20,则自然数n     .

试题详情

(1)

(A)5(1-38i)   (B)5(1+38i)   (C)1+38i   (D)1-38i

(2)不等式|2x2-1|≤的解集为

(A)   (B)  

(C)    (D)

(3)已知F1F2为椭圆()的焦点;M为椭圆上一点,MF1垂直于x轴,且∠F1MF2=600,则椭圆的离心率为

(A)   (B)    (C)   (D)

(4)

(A)0   (B)32   (C)-27   (D)27

(5)等边三角形ABC的边长为4,MN分别为ABAC的中点,沿MN将△AMN折起,使得面AMN与面MNCB所处的二面角为300,则四棱锥AMNCB的体积为

(A)   (B)   (C)   (D)3

(6)已知数列满足(),则当时,

(A)2n   (B)   (C)2n-1   (D)2n-1

(7)若二面角为1200,直线,则所在平面内的直线与m所成角的取值范围是

(A)   (B)[300,600]   (C)[600,900]   (D)[300,900]

(8)若,则

(A)2-sin2x   (B)2+sin2x   (C)2-cos2x   (D)2+cos2x

(9)直角坐标xOy平面上,平行直线xn(n=0,1,2,……,5)与平行直线yn(n=0,1,2,……,5)组成的图形中,矩形共有

(A)25个   (B)36个   (C)100个   (D)225个

(10)已知直线lxy―1=0,l1:2xy―2=0.若直线l2l1关于l对称,则l2的方程是

(A)x―2y+1=0   (B)x―2y―1=0   (C)x+y―1=0   (D)x+2y―1=0

(11)已知向量集合,则

(A){(1,1)}    (B){(1,1),(-2,-2)}  

(C){(-2,-2)}   (D)

(12)函数的最小正周期为

(A)   (B)   (C)   (D)2

试题详情

16、如图所示,已知圆为圆上一动点,点P在A上,

点N在CM上,且满足的轨迹为曲线E.(I)求曲线E的方程;(II)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),

且满足,求的取值范围.

试题详情

15、已知A、B、C是直线m上的三点,且|AB|=|BC|=6,⊙O′切直线m于点A,又过B、C作⊙O′异于的两切线,切点分别为D、E,设两切线交于点P,(1)求点P的轨迹方程

(2)经过点C的直线与点P的轨迹交于M、N两点,且点C分所成比等于2∶3,

  求直线的方程.

试题详情

14、已知函数(为正常数),且函数的图象在轴上的截距相等。(1)求的值;  (2)求函数的单调递增区间;

(3)若为正整数,证明:.

试题详情

13、记=(),=(),且0(1)若向量的夹角为锐角,求实数x的取值范围。(2)若//,且,求实数

试题详情

12、在某次数学测验中,学号为的四位同学的考试成绩

且满足,则四位同学的考试成绩的所有可能情况有    种(用数字作答).

试题详情

11、给定,定义使……为整数的数叫做企盼数,则区间(1,2004)内的所有企盼数的和M=        

试题详情

10、已知铜的单晶体的外形是简单几何体,单晶体有三角形和八边形两种晶面,如果铜的单晶体有24个顶点,每个顶点处有3条棱,那么单晶铜的三角形晶面和八边形晶面的数目分别为       

试题详情


同步练习册答案